Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics with a Memory

28.06.2002


Self-repairing fenders and intelligent implants - shape-memory polymers as materials of the future



With a bang, the fender is dented and has to be replaced. Wouldn`t it be nice if the dent could simply - presto! - disappear? Such "intelligent" materials are already being developed, relate Andreas Lendlein and Steffen Kelch in an overview of the field in Angewandte Chemie.

Shape-memory polymers, that`s the magic words: after an undesired deformation, such as a dent in the fender, these plastics "remember" their original shape. Heating them up gives their "memory" a boost - the dent could thus be removed with a hair-dryer.


Polymers with shape memory have both a visible, current form and a stored, permanent one. Once the latter has been produced by conventional methods, the material is molded into a second, temporary form by skillful heating, deformation, and finally cooling. The plastic maintains this shape until the permanent form is recalled by a predetermined external stimulus. The secret behind these clever materials lies in their molecular network structure, which contains meltable "switching segments". Raising the temperature activates the switching: the crystallized switching segments melt and the material resumes its original form.

In the case of the fender, we are just interested in one shape: the undamaged original shape. The impact results in a temporary form, which changes back to the original form upon heating - the plastic repairs itself.

The two researchers have high hopes that especially interesting applications will be found for shape memory polymers that are tolerated physiologically. These are just the thing for buttonhole surgery, the gentle operative technique of the future. It is conceivable that large implants in a compressed state could be introduced into the body in a minimally invasive fashion, and could subsequently "remember" their original shape. Such materials can also be made to be completely biodegradable, eventually disappearing out of the patient`s body.

Frank Maass | alfa

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>