Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting breast cancer patient outcome: MUHC researchers identify new genes

30.04.2008
Not a day goes by without a new story about the environment. Although we often consider the environment on a global scale, cells in our body also have to contend with environmental factors. New studies from a team of researchers from the Research Institute of the MUHC and McGill University show that the environment surrounding breast cancer cells plays a crucial role in determining whether tumor cells grow and migrate or whether they fade away.

Their study is the first to identify the genes behind this environmental control and correlate them with patient outcome. Their findings are published in this week’s issue of Nature Medicine.

“A tumour can not exist on its own. It has to be supported and nourished by the cell types around it, the microenvironment,” says senior author Dr Morag Park, Director of the molecular oncology group at the Research institute if the MUHC. “When we began this study there was little known about the importance of this microenvironment on cancer initiation and progression. We now know that this environment is pivotal; different patients have distinct tumour microenvironments at a gene level. Our findings show that the gene profile of these distinct microenvironments can be used to determine clinical outcome – who will fare well and who will not.”

Dr Park, a professor of oncology, biochemistry, and medicine at McGill University, and her team analyzed tissue from 53 breast cancer patients. They used a unique technique, laser capture microdissection (LCM), to separate tumour cells from microenvironment tissue. They compared the gene expression between the microenvironment tissue and controls using micro-array analysis. From thousands of genes they identified 163, which correlated with patient outcome. A good outcome was defined as having no tumour metastasis and tumour migration and non-responsiveness to therapy was considered poor outcome.

... more about:
»Clinical »MUHC »breast »microenvironment »predict »tumour

From the original 163 genes, the team further identified a panel of 26 specific genes that could be used to accurately predict clinical outcome. This 26 gene-profile, called the stromal derived prognostic predictor (SDPP), was used to predict outcome from a second set of beast cancer patients.

“We were able to show that the SDPP effectively predicts outcome in a second group of patients,” says Dr Park, “This panel accurately forecasted patient status, suggesting that this may be a promising diagnostic tool.

“Our next steps are to develop this 26-gene predictor into a functional test. We are currently working on this and we anticipate a product for clinical trials within a year,” adds Park.

“This work takes tremendous dedication and collaboration from a number of people including pathologists, surgeons, oncologists as well as researchers. I would like to thank the outstanding work done by G. Finak from the laboratory of Dr M. Hallett of McGill’s Computer Science Department, the breast surgeons of the MUHC, including Dr S. Meterissian, and by the Department of Pathology at McGill, where Dr A. Omeroglu works."

This research was funded by from the Quebec Breast Cancer Foundation, Genome Canada-Genome Quebec, Quebec Valorisation-Recherche Quebec, Fonds de la Recherche en Sante du Quebec, Canadian Institutes for Health Research Team Grant, and the National Science and Engineering Research Council of Canada Discovery Grant.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec. For further details visit: www.muhc.ca/research.

About McGill University

McGill University is Canada's leading research-intensive university and has earned an international reputation for scholarly achievement and scientific discovery. Founded in 1821, McGill has 21 faculties and professional schools, which offer more than 300 programs from the undergraduate to the doctoral level. McGill attracts renowned professors and researchers from around the world and top students from more than 150 countries, creating one of the most dynamic and diverse education environments in North America. There are approximately 23,000 undergraduate students and 7,000 graduate students. It is one of two Canadian members of the American Association of Universities. McGill's two campuses are located in Montreal, Canada. www.mcgill.ca

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca
Mark Shainblum
Media Relations Officer (Research)
McGill University
(514) 398-2189
mark.shainblum@mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.mcgill.ca

Further reports about: Clinical MUHC breast microenvironment predict tumour

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>