Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exeter engineers create new technique for malaria diagnosis

29.04.2008
Researchers from the Universities of Exeter and Coventry have developed the first new technique for diagnosing malaria able to challenge the rapid diagnostic tests (RDTs) currently used in the field.

Early results, now published in the Biophysical Journal, suggest that the technique could be as effective as RDTs but far faster and cheaper, making it a potentially viable alternative.

The team is now working on a non-invasive version of the device, which with the assistance of a team from the Royal Tropical Institute (KIT), Department of Biomedical Research in Amsterdam, it is planning to trial in Kenya later this year.

Two years in the making and funded by the European Union, this technique uses magneto-optic technology (MOT) to detect haemozoin, a waste product of the malarial parasite, in the blood. Haemozoin crystals are weakly magnetic and have a distinct rectangular form. They also exhibit optical dichroism, which means that they absorb light more strongly along their length than across their width. When aligned by a magnetic field they behave like a weak Polaroid© sheet such as used in sunglasses. This new technology takes advantage of these properties to give a precise reading of the presence of haemozoin in a small blood sample. The team has created a device, which gives a positive or negative reading for malaria in less than a minute.

... more about:
»Malaria »RDTs »diagnosis

The new device has a totally different approach from RDTs, which use a chemical agent to detect antigens associated with the malarial parasite. One of the problems with RDTs is that they need to be kept within a given temperature range, which is difficult in hot climates. These disposable kits cost between $1.50 and $4.50 each and take around 15 minutes to deliver a reading.

High-power microscopy is still the best method available for malaria diagnosis and has been used for more than a century. Unfortunately it is time-consuming and requires expensive equipment and specialist medical skills, which are rarely available in villages in rural areas in malaria endemic countries. Over the last decade RDTs have been developed, which allow for faster diagnosis in the field, but these are too costly to be viable for developing countries. Furthermore, RDTs are often not stable at relatively high temperatures and sometimes remain positive even after successful treatment. In many communities where malaria is having a severe impact on health, there is no testing for malaria and young children who have a fever are given anti-malaria drugs as a matter of course. This has contributed to the malarial parasite becoming increasingly resistant to the common anti-malaria drugs. Malaria is a disease for which there is still no vaccine.

Professor Dave Newman of the University of Exeter’s School of Engineering, Computing and Mathematics, said: “There is an urgent need for a new diagnostic technique for malaria, particularly in the light of global warming, which threatens to spread the disease into new parts of the world, including southern Europe. The early results from our device are very promising and hugely exciting. We expect to ultimately produce a sensitive non-invasive device that will be cost effective and easy to use, making it suitable for developing countries, where the need is greatest.”

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

Further reports about: Malaria RDTs diagnosis

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>