New Tool Scans the Genome for Disease-relevant Variations

The researchers are convinced that this new tool can help understand the development of cardiovascular diseases or diabetes in laboratory rats as well as in humans. The paper of the STAR consortium has been published online in the current issue of the journal Nature Genetics* (Vol. 40, No. 5, pp. 560 – 566, 2008).

Laboratory rats are particularly suited for analyzing the genetic causes of epidemiological-relevant diseases. For over 150 years, scientists have been using laboratory rats as model animals in clinical research laboratories. It is known that the DNA sequence of every organism shows natural variations called “single nucleotide polymorphisms” or SNPs. Typically, the genome of an individual has several million SNPs and, thus, he or she differs at this level from others within the same species. Scientists investigate these SNPs to clarify whether they are linked to or influence the development of certain diseases. The MDC researchers and their colleagues in Europe and Japan have now identified three million SNPs in the genome of the rat. Thus, they were able to expand and improve upon the existing genomic map which until now was based on the analyses of only three rat strains.

SNP and haplotype mapping for genetic analysis in the rat
The STAR Consortium1
The complete list of authors is as follows:
The STAR Consortium: Kathrin Saar1, Alfred Beck2, Marie-Thérèse Bihoreau3, Ewan Birney4, Denise Brocklebank3, Yuan Chen4, Edwin Cuppen5, Stephanie Demonchy6, Paul Flicek4, Mario Foglio6, Asao Fujiyama7,8, Ivo G. Gut6, Dominique Gauguier3, Roderic Guigo9, Victor Guryev5, Matthias Heinig1, Oliver Hummel1, Niels Jahn10, Sven Klages2, Vladimir Kren11, Heiner Kuhl2, Takashi Kuramoto12, Yoko Kuroki7, Doris Lechner6, Young-Ae Lee1, Nuria Lopez-Bigas9, G. Mark Lathrop6, Tomoji Mashimo12, Michael Kube2, Richard Mott3, Giannino Patone1, Jeanne-Antide Perrier-Cornet6, Matthias Platzer10, Michal Pravenec11, Richard Reinhardt2, Yoshiyuki Sakaki7, Markus Schilhabel10, Herbert Schulz1, Tadao Serikawa12, Medya Shikhagaie9, Shouji Tatsumoto7, Stefan Taudien10, Atsushi Toyoda7, Birger Voigt12, Diana Zelenika6, Heike Zimdahl1 & Norbert Hübner1

1Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125, Berlin, Germany. 2Max Planck Institute for Molecular Genetics, Berlin, Germany. 3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 4European Bioinformatics Institute, Hinxton, UK. 5Hubrecht Institute, Utrecht, The Netherlands. 6CEA/Institut de Génomique, Centre National de Génotypage, Evry, France. 7RIKEN Genomic Sciences Center, Kanagawa 230-0045, Japan. 8National Institute of Informatics, Tokyo 101-8430, Japan. 9Centre de Regulacio Genomica, Barcelona, Spain. 10Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut, Jena, Germany. 11Institute of Physiology, Czech Academy of Sciences and 1st Medical Faculty, Charles University, Prague, Czech Republic. 12Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors