Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Findings Open New Front in Fight against AIDS Virus

29.04.2008
Human Protein May Offer Novel Target for Blocking HIV Infection

A research group supported by the National Institutes of Health (NIH) has uncovered a new route for attacking the human immunodeficiency virus (HIV) that may offer a way to circumvent problems with drug resistance. In findings published today in the online edition of the Proceedings of the National Academy of Sciences, the researchers report that they have blocked HIV infection in the test tube by inactivating a human protein expressed in key immune cells.

Most of the drugs now used to fight HIV, which is the retrovirus that causes acquired immune deficiency syndrome (AIDS), target the virus’s own proteins. However, because HIV has a high rate of genetic mutation, those viral targets change quickly and lead to the emergence of drug-resistant viral strains. Doctors have tried to outmaneuver the rapidly mutating virus by prescribing multi-drug regimens or switching drugs. But such strategies can increase the risk of toxic side effects, be difficult for patients to follow and are not always successful. Recently, interest has grown in attacking HIV on a new front by developing drugs that target proteins of human cells, which are far less prone to mutations than are viral proteins.

In the new study, Pamela Schwartzberg, M.D., Ph.D., a senior investigator at the National Human Genome Research Institute (NHGRI), part of NIH; Andrew J. Henderson, Ph.D., of Boston University; and their colleagues found that when they interfered with a human protein called interleukin-2-inducible T cell kinase (ITK) they inhibited HIV infection of key human immune cells, called T cells. ITK is a signaling protein that activates T cells as part of the body’s healthy immune response.

... more about:
»Aids »HIV »ITK »Infection »Inhibitor »NIH »Schwartzberg »T cells

“This new insight represents an important contribution to HIV research,” said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. “Finding a cellular target that can be inhibited so as to block HIV validates a novel concept and is an exciting model for deriving potential new HIV therapies.”

When HIV enters the body, it infects T cells and takes over the activities of these white blood cells so that the virus can replicate. Eventually, HIV infection compromises the entire immune system and causes AIDS. The new work shows that without active ITK protein, HIV cannot effectively take advantage of many signaling pathways within T cells, which in turn slows or blocks the spread of the virus.

“We were pleased and excited to realize the outcome of our approach,” Dr. Schwartzberg said. “Suppression of the ITK protein caused many of the pathways that HIV uses to be less active, thereby inhibiting or slowing HIV replication.”

In their laboratory experiments, the researchers used a chemical inhibitor and a type of genetic inhibitor, called RNA interference, to inactivate ITK in human T cells. Then, the T cells were exposed to HIV, and the researchers studied the effects of ITK inactivation upon various stages of HIV’s infection and replication cycle. Suppression of ITK reduced HIV’s ability to enter T cells and have its genetic material transcribed into new virus particles. However, ITK suppression did not interfere significantly with T cells’ normal ability to survive, and mice deficient in ITK were able to ward off other types of viral infection, although antiviral responses were delayed.

“ITK turns out to be a great target to examine,” said Dr. Schwartzberg, noting that researchers had been concerned that blocking other human proteins involved in HIV replication might kill or otherwise impair the normal functions of T cells.

According to Dr. Schwartzberg, ITK already is being investigated as a therapeutic target for asthma and other diseases that affect immune response. In people with asthma, ITK is required to activate T cells, triggering lung inflammation and production of excess mucus.

“There are several companies who have published research about ITK inhibitors as part of their target program,” Schwartzberg said. “We hope that others will extend our findings and that ITK inhibitors will be pursued as HIV therapies.”

NHGRI researchers received support for this work from the NIH Intramural AIDS Targeted Antiviral Program. Chemical compounds used in the research were synthesized at the NIH Chemical Genomics Center, which was established through the NIH Roadmap for Medical Research and is administered by NHGRI. The Boston University group originally participated in the research while at Pennsylvania State University, where they received support from Penn State Tobacco Formula Funds, and where Dr. Henderson received support from the National Institute of Allergy and Infectious Diseases (NIAID).

Raymond MacDougall | NHGRI
Further information:
http://www.genome.gov
http://www3.niaid.nih.gov/healthscience/healthtopics/HIVAIDS/overview.htm

Further reports about: Aids HIV ITK Infection Inhibitor NIH Schwartzberg T cells

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>