Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Findings Open New Front in Fight against AIDS Virus

29.04.2008
Human Protein May Offer Novel Target for Blocking HIV Infection

A research group supported by the National Institutes of Health (NIH) has uncovered a new route for attacking the human immunodeficiency virus (HIV) that may offer a way to circumvent problems with drug resistance. In findings published today in the online edition of the Proceedings of the National Academy of Sciences, the researchers report that they have blocked HIV infection in the test tube by inactivating a human protein expressed in key immune cells.

Most of the drugs now used to fight HIV, which is the retrovirus that causes acquired immune deficiency syndrome (AIDS), target the virus’s own proteins. However, because HIV has a high rate of genetic mutation, those viral targets change quickly and lead to the emergence of drug-resistant viral strains. Doctors have tried to outmaneuver the rapidly mutating virus by prescribing multi-drug regimens or switching drugs. But such strategies can increase the risk of toxic side effects, be difficult for patients to follow and are not always successful. Recently, interest has grown in attacking HIV on a new front by developing drugs that target proteins of human cells, which are far less prone to mutations than are viral proteins.

In the new study, Pamela Schwartzberg, M.D., Ph.D., a senior investigator at the National Human Genome Research Institute (NHGRI), part of NIH; Andrew J. Henderson, Ph.D., of Boston University; and their colleagues found that when they interfered with a human protein called interleukin-2-inducible T cell kinase (ITK) they inhibited HIV infection of key human immune cells, called T cells. ITK is a signaling protein that activates T cells as part of the body’s healthy immune response.

... more about:
»Aids »HIV »ITK »Infection »Inhibitor »NIH »Schwartzberg »T cells

“This new insight represents an important contribution to HIV research,” said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. “Finding a cellular target that can be inhibited so as to block HIV validates a novel concept and is an exciting model for deriving potential new HIV therapies.”

When HIV enters the body, it infects T cells and takes over the activities of these white blood cells so that the virus can replicate. Eventually, HIV infection compromises the entire immune system and causes AIDS. The new work shows that without active ITK protein, HIV cannot effectively take advantage of many signaling pathways within T cells, which in turn slows or blocks the spread of the virus.

“We were pleased and excited to realize the outcome of our approach,” Dr. Schwartzberg said. “Suppression of the ITK protein caused many of the pathways that HIV uses to be less active, thereby inhibiting or slowing HIV replication.”

In their laboratory experiments, the researchers used a chemical inhibitor and a type of genetic inhibitor, called RNA interference, to inactivate ITK in human T cells. Then, the T cells were exposed to HIV, and the researchers studied the effects of ITK inactivation upon various stages of HIV’s infection and replication cycle. Suppression of ITK reduced HIV’s ability to enter T cells and have its genetic material transcribed into new virus particles. However, ITK suppression did not interfere significantly with T cells’ normal ability to survive, and mice deficient in ITK were able to ward off other types of viral infection, although antiviral responses were delayed.

“ITK turns out to be a great target to examine,” said Dr. Schwartzberg, noting that researchers had been concerned that blocking other human proteins involved in HIV replication might kill or otherwise impair the normal functions of T cells.

According to Dr. Schwartzberg, ITK already is being investigated as a therapeutic target for asthma and other diseases that affect immune response. In people with asthma, ITK is required to activate T cells, triggering lung inflammation and production of excess mucus.

“There are several companies who have published research about ITK inhibitors as part of their target program,” Schwartzberg said. “We hope that others will extend our findings and that ITK inhibitors will be pursued as HIV therapies.”

NHGRI researchers received support for this work from the NIH Intramural AIDS Targeted Antiviral Program. Chemical compounds used in the research were synthesized at the NIH Chemical Genomics Center, which was established through the NIH Roadmap for Medical Research and is administered by NHGRI. The Boston University group originally participated in the research while at Pennsylvania State University, where they received support from Penn State Tobacco Formula Funds, and where Dr. Henderson received support from the National Institute of Allergy and Infectious Diseases (NIAID).

Raymond MacDougall | NHGRI
Further information:
http://www.genome.gov
http://www3.niaid.nih.gov/healthscience/healthtopics/HIVAIDS/overview.htm

Further reports about: Aids HIV ITK Infection Inhibitor NIH Schwartzberg T cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>