Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes grown straight in large numbers

25.04.2008
Duke University chemists have found a way to grow long, straight cylinders only a few atoms thick in very large numbers, removing a major roadblock in the pursuit of nano-scale electronics.

These single-walled carbon nanotubes also follow parallel paths as they grow so they don't cross each other to potentially impede electronic performance, said Duke associate chemistry professor Jie Liu, who leads the research. Carbon nanotubes can act as semiconductors and could thus further scale-down circuitry to features measuring only billionths of a meter.

Liu's team directed swarms of nanotubes to extend in the same direction by using the crystal structure of a quartz surface as a template. The availability of forests of identical nanotubes would allow future nanoengineers to bundle them onto multiple ultra-tiny chips that could operate with enough power and speed for nanoprocessing.

"It's quite an exciting development," said Liu, who has received a patent on the process. "Compared with what other people have done, we have reached a higher density of nanotubes. Wherever you look through the microscope there are nanotubes. And they are much better aligned and grow very straight."

... more about:
»Carbon »Liu »Nanotubes »Semiconductor »Surface »catalyst »quartz

Liu and two coauthors, postdoctoral fellow Lei Ding and graduate student Dongning Yuan, described their accomplishment April 16 in the Journal of the American Chemical Society (JACS). Ding was the study's first author. Their research was funded by the United States Naval Research Laboratory and by Duke.

Nanotubes have been a focus of research since the 1990s because of their exceptional lightness and strength and their potential to function in a new kind of electronics as either semiconductors or metals -- depending on their individual architectures.

Sized so small they can be viewed only with scanning electron or atomic force microscopes, carbon nanotubes could usher the electronics industry into an even-smaller scale of miniaturization if researchers can leap some fabrication barriers.

"This would break a logjam for reproducing enough of them in identical form to build into working devices," Liu said of his group's new innovation. "With our technique, their densities are high enough over a large area. And every device would be quite the same, even if thousands or a million of them were made," Liu said.

Researchers have for some time been able to coax nanotubes into growing and extending themselves when primed by a catalyst and provided with a continuous source of carbon delivered in a gas.

But, until now, they have been unable to make them grow straight, long and dense enough in a large enough area to be practical for carrying current on the surfaces of semiconducting wafers, Liu said.

Researchers have also been struggling to control growing nanotubes' tendencies to bend and overlap each other as they extend. Such overlaps would impede a future nanocircuit's performance at high operating speeds, he added.

In 2000, a Liu-led research team at Duke became the first to make long and aligned nanotubes grow on surfaces, though not in a sufficiently parallel and straight way, he said. He has also vied with other groups in growing nanotubes to record lengths.

Recently, other scientific groups developed a way to grow perfectly aligned nanotubes along continuous-and-unbroken "single crystal" surfaces of quartz or sapphire.

One team using that method reported making as many as 10 nanotubes grow within the space of a single micron -- one millionth of a meter -- using iron as a catalyst. They also observed areas with nanotubes as dense as 50 per micron. But such numbers at that density are still "low and not uniform enough for many useful electronic applications," Liu said.

In the new JACS report, Liu's group reports improving on that performance by modifying the method.

Using copper as their growth catalyst and gasified alcohol to supply carbon, the Duke researchers found that their nanotubes all extended in the same direction, following parallel paths determined by the crystalline orientation of "stable temperature" (ST)-cut quartz wafers used in electronic applications. "They're like a trains running on tracks that are all very straight," Liu said.

By applying computer chip fabrication-style masks to confine uniform coatings of catalyst within very narrow lines along those crystal orientations, Liu's group was able to keep an unprecedented number of nanotubes growing in parallel, without crossing paths.

"To the best of our knowledge, it is the highest density of aligned, single-wall nanotubes reported," the researchers wrote in JACS.

Once formed on ST-cut quartz, the aligned swarms of nanotubes can be transferred onto the less-expensive semiconductor wafers normally used in computer chips, Liu said. He and collaborators are now exhaustively testing their nanotubes to see how many have the right architectures to serve as semiconductors.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Carbon Liu Nanotubes Semiconductor Surface catalyst quartz

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>