Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Menstrual blood -- a valuable source of multipotential stem cells?

25.04.2008
Researchers seeking new and more abundant sources of stem cells for use in regenerative medicine have identified a potentially unlimited, noncontroversial, easily collectable, and inexpensive source – menstrual blood.

Stromal stem cells - cells that are present in connective tissues - have recently been identified in endometrial tissues of the uterus. When the fresh growth of tissue and blood vessels is shed during each menstrual cycle, some cells with regenerative capabilities are present and collectable. While collecting menstrual blood stromal cells (MenSCs) directly from tissue would be invasive, retrieving them during the menstrual cycle would not be.

“Stromal stem cells derived from menstrual blood exhibit stem cell properties, such as the capacity for self-renewal and multipotency,” said Amit N. Patel, MD, MS, Director of Cardiac Cell Therapy at the University of Pittsburgh’s McGowan Institute of Regenerative Medicine. “Uterine stromal cells have similar multipotent markers found in bone marrow stem cells and originate in part from bone marrow.”

Published in the most recent issue of Cell Transplantation (Volume 17, issue 3), the study examined to what degree MenSCs demonstrated an ability to differentiate into a variety of cell lineages.

... more about:
»MenSCs »Patel »Source »Stem »menstrual »regenerative »stem cells

Tests showed that MenSCs could differentiate into adipogenic, chondrogenic, osteogenic, ectodermal, mesodermal, cardiogenic, and neural cell lineages. According to Patel, the sample MenSCs expanded rapidly and maintained greater than 50 percent of their telomerase activity when compared to human embryonic stem cells and better than bone marrow-derived stem cells. “Studies have demonstrated that MenSCs are easily expandable to clinical relevance and express multipotent markers at both the molecular and cellular level,” concluded Patel.

Researchers emphasized the importance of the abundance and plasticity of MenSCs. Based on the results of their studies, they noted the potential for MenSCs in regenerative transplantation therapies for many different organs and tissues. “The need for regenerative therapies using cells with the ability to engraft and differentiate is vast,” said Patel.

“The ideal cell would also have the ability to be used in an allogenic manner from donors for optimal immunogenic compatibility. Due to their ease of collection and isolation, MenSCs would be a great source of multipotent cells if they exhibit this property along with their ability to differentiate,” concluded Julie G. Allickson, Ph.D., Vice President of Laboratory Operations and Research & Development, Cryo-Cell International, Inc., the study-partner company that identified, extracted, and initially analyzed the cells. “The preliminary results are extremely encouraging and support the importance of further study of these cells in several different areas including heart disease, diabetes and neurodegenerative disease.”

Dwaine Emerich, Ph.D., a section editor for Cell Transplantation, believes that “These studies are a significant step forward in the development of transplantable stem cells for human diseases because they address major issues including routine and safe cell harvesting of renewable cells that maintain their differentiation capacity and can be scaled for widespread clinical use.”

Amit Patel | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: MenSCs Patel Source Stem menstrual regenerative stem cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>