Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Menstrual blood -- a valuable source of multipotential stem cells?

25.04.2008
Researchers seeking new and more abundant sources of stem cells for use in regenerative medicine have identified a potentially unlimited, noncontroversial, easily collectable, and inexpensive source – menstrual blood.

Stromal stem cells - cells that are present in connective tissues - have recently been identified in endometrial tissues of the uterus. When the fresh growth of tissue and blood vessels is shed during each menstrual cycle, some cells with regenerative capabilities are present and collectable. While collecting menstrual blood stromal cells (MenSCs) directly from tissue would be invasive, retrieving them during the menstrual cycle would not be.

“Stromal stem cells derived from menstrual blood exhibit stem cell properties, such as the capacity for self-renewal and multipotency,” said Amit N. Patel, MD, MS, Director of Cardiac Cell Therapy at the University of Pittsburgh’s McGowan Institute of Regenerative Medicine. “Uterine stromal cells have similar multipotent markers found in bone marrow stem cells and originate in part from bone marrow.”

Published in the most recent issue of Cell Transplantation (Volume 17, issue 3), the study examined to what degree MenSCs demonstrated an ability to differentiate into a variety of cell lineages.

... more about:
»MenSCs »Patel »Source »Stem »menstrual »regenerative »stem cells

Tests showed that MenSCs could differentiate into adipogenic, chondrogenic, osteogenic, ectodermal, mesodermal, cardiogenic, and neural cell lineages. According to Patel, the sample MenSCs expanded rapidly and maintained greater than 50 percent of their telomerase activity when compared to human embryonic stem cells and better than bone marrow-derived stem cells. “Studies have demonstrated that MenSCs are easily expandable to clinical relevance and express multipotent markers at both the molecular and cellular level,” concluded Patel.

Researchers emphasized the importance of the abundance and plasticity of MenSCs. Based on the results of their studies, they noted the potential for MenSCs in regenerative transplantation therapies for many different organs and tissues. “The need for regenerative therapies using cells with the ability to engraft and differentiate is vast,” said Patel.

“The ideal cell would also have the ability to be used in an allogenic manner from donors for optimal immunogenic compatibility. Due to their ease of collection and isolation, MenSCs would be a great source of multipotent cells if they exhibit this property along with their ability to differentiate,” concluded Julie G. Allickson, Ph.D., Vice President of Laboratory Operations and Research & Development, Cryo-Cell International, Inc., the study-partner company that identified, extracted, and initially analyzed the cells. “The preliminary results are extremely encouraging and support the importance of further study of these cells in several different areas including heart disease, diabetes and neurodegenerative disease.”

Dwaine Emerich, Ph.D., a section editor for Cell Transplantation, believes that “These studies are a significant step forward in the development of transplantable stem cells for human diseases because they address major issues including routine and safe cell harvesting of renewable cells that maintain their differentiation capacity and can be scaled for widespread clinical use.”

Amit Patel | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: MenSCs Patel Source Stem menstrual regenerative stem cells

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>