Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in virology

25.04.2008
Viruses use various tricks and disguises to invade cells. ETH Zurich researchers have now discovered yet another strategy used by viruses: the vaccinia virus disguises itself as cell waste, triggers the formation of evaginations in cells and is suspected to enter the cell interior before the immune defense even notices. The research results have been published in Science.

The vaccinia virus has a problem: it is a giant among viruses and needs a special strategy in order to infiltrate a cell and reproduce. Professor Ari Helenius and Postdoc Jason Mercer from ETH Zurich's Institute for Biochemistry have now discovered what this strategy is. In the process, they stumbled upon new and surprising findings.

The invasion strategy

In order to infiltrate a cell, the vaccinia virus exploits the cellular waste disposal mechanism. When a cell dies, other cells in the vicinity ingest the remains, without needing waste disposal experts such as macrophages. The cells recognize the waste via a special molecule, phosphatidylserine, which sits on the inner surface of the double membrane of cells. This special molecule is pushed out as soon as the cell dies and is broken into parts. The vaccinia virus itself also carries this official waste tag on its surface. "The substance accumulates on the shell of vaccinia viruses", Jason Mercer explained. The pathogen disguises itself as waste material and tricks cells into digesting it, just as they normally would with the remains of dead cells. As the immune response is simultaneously suppressed, the virus can be ingested as waste without being noticed.

The uptake into the cell itself is via macropinocytosis. The ETH Zurich researchers have demonstrated that the vaccinia virus moves along actin-rich filamentous extensions towards the cell. As soon as they impinge upon the cell membrane, an evagination forms, a bleb. The virus itself is the trigger for the formation of the evagination. Using a messenger substance to "knock on the door", the virus triggers a signaling chain reaction inside the cell so that the bleb forms, catches the virus and smuggles it into the cell.

Proteins as unsuspecting allies

"The viruses are the Trojan horses that want to enter Troy; the Trojans are the many proteins that transmit the signals and open the 'city gates' to the unwelcome guest", Ari Helenius said. Aided by Professor Lukas Pelkmans' team, Jason Mercer examined over 7000 different proteins in order to find out not only which Trojans let the virus in, but which as well are chiefly involved in the supply chain. Using definitive methods, the researchers de-activated each one of the suspected proteins to examine their function,and narrowed the vast number of proteins down to 140 potential culprits. The enzyme kinase PAK1 turned out to be an especially "helpful" citizen of Troy. Without PAK1, the pathogen's trick did not work and the cell did not form any evaginations.

Until now, very little has been known about the mechanism vaccinia viruses use to infiltrate a cell. Professor Helenius, whose research objective is to find out what methods and strategies various different viruses employ to invade somatic cells, clarified "This strategy is a new one". Other viruses, such as herpes, adeno and H1 viruses use macropinocytosis. However the vaccinia virus is the first one identified that uses apoptotic mimicry as an entry strategy.

Knowledge of the virus strategies and the signal proteins involved in the ingestion of a virus by a cell is crucial to finding and developing new agents against the pathogens. Until now, antiviral medication has targeted the virus itself. Ari Helenius, however, is looking for substances that interrupt the signaling chain and halt the communication between the virus and the cell. If the cell does not ingest a virus, the virus cannot reproduce and is quickly eliminated by the im-mune system. This process also has another big advantage: "Viruses cannot adapt to the obstruction of the signal chain all that quickly", he said.

further information:
ETH Zurich
Jason Mercer, Postdoctoral Fellow
Telephone +41 (0)44 632 58 18
jason.mercer@bc.biol.ethz.ch
*
Smallpox: a bioterrorist attack?
The vaccinia virus belongs to a family of particularly dangerous viruses, namely the pox viruses. The most infamous member, Variola, the casitive agent of smallpox constituted a global pandemic disease in the Middle Ages, causing the deaths of millions of people, especially among the indigenous population of North America who became infected by European settlers. Pox was the first viral disease against which a vaccination was developed. In 1771, the first rudimentary vaccine was produced from cowpox viruses, which protected people from the sequelae of the disease. Since 1978, the disease has been classed as eradicated and officially is preserved in only two laboratories; one in Atlanta, the other in Novosibirsk. US authorities, however, fear bioterrorist attacks with pox viruses. Research on these dangerous pathogens is thus encouraged.
*
ETH Zurich (Swiss Federal Institute of Technology Zurich) has a student body of nearly fourteen thousand students from 80 nations. About 360 professors teach mainly in engineering sciences and architecture, systems-oriented sciences, mathematics and natural sciences, as well as carry out research that is highly valued worldwide. Distinguished by the successes of 21 Nobel laureates, ETH Zurich is committed to providing its students with unparalleled education and outstanding leadership skills.

Renata Cosby | idw
Further information:
http://www.ethz.ch

Further reports about: Chain Helenius Mercer Pathogen Trojan evagination proteins vaccinia

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>