Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in virology

25.04.2008
Viruses use various tricks and disguises to invade cells. ETH Zurich researchers have now discovered yet another strategy used by viruses: the vaccinia virus disguises itself as cell waste, triggers the formation of evaginations in cells and is suspected to enter the cell interior before the immune defense even notices. The research results have been published in Science.

The vaccinia virus has a problem: it is a giant among viruses and needs a special strategy in order to infiltrate a cell and reproduce. Professor Ari Helenius and Postdoc Jason Mercer from ETH Zurich's Institute for Biochemistry have now discovered what this strategy is. In the process, they stumbled upon new and surprising findings.

The invasion strategy

In order to infiltrate a cell, the vaccinia virus exploits the cellular waste disposal mechanism. When a cell dies, other cells in the vicinity ingest the remains, without needing waste disposal experts such as macrophages. The cells recognize the waste via a special molecule, phosphatidylserine, which sits on the inner surface of the double membrane of cells. This special molecule is pushed out as soon as the cell dies and is broken into parts. The vaccinia virus itself also carries this official waste tag on its surface. "The substance accumulates on the shell of vaccinia viruses", Jason Mercer explained. The pathogen disguises itself as waste material and tricks cells into digesting it, just as they normally would with the remains of dead cells. As the immune response is simultaneously suppressed, the virus can be ingested as waste without being noticed.

The uptake into the cell itself is via macropinocytosis. The ETH Zurich researchers have demonstrated that the vaccinia virus moves along actin-rich filamentous extensions towards the cell. As soon as they impinge upon the cell membrane, an evagination forms, a bleb. The virus itself is the trigger for the formation of the evagination. Using a messenger substance to "knock on the door", the virus triggers a signaling chain reaction inside the cell so that the bleb forms, catches the virus and smuggles it into the cell.

Proteins as unsuspecting allies

"The viruses are the Trojan horses that want to enter Troy; the Trojans are the many proteins that transmit the signals and open the 'city gates' to the unwelcome guest", Ari Helenius said. Aided by Professor Lukas Pelkmans' team, Jason Mercer examined over 7000 different proteins in order to find out not only which Trojans let the virus in, but which as well are chiefly involved in the supply chain. Using definitive methods, the researchers de-activated each one of the suspected proteins to examine their function,and narrowed the vast number of proteins down to 140 potential culprits. The enzyme kinase PAK1 turned out to be an especially "helpful" citizen of Troy. Without PAK1, the pathogen's trick did not work and the cell did not form any evaginations.

Until now, very little has been known about the mechanism vaccinia viruses use to infiltrate a cell. Professor Helenius, whose research objective is to find out what methods and strategies various different viruses employ to invade somatic cells, clarified "This strategy is a new one". Other viruses, such as herpes, adeno and H1 viruses use macropinocytosis. However the vaccinia virus is the first one identified that uses apoptotic mimicry as an entry strategy.

Knowledge of the virus strategies and the signal proteins involved in the ingestion of a virus by a cell is crucial to finding and developing new agents against the pathogens. Until now, antiviral medication has targeted the virus itself. Ari Helenius, however, is looking for substances that interrupt the signaling chain and halt the communication between the virus and the cell. If the cell does not ingest a virus, the virus cannot reproduce and is quickly eliminated by the im-mune system. This process also has another big advantage: "Viruses cannot adapt to the obstruction of the signal chain all that quickly", he said.

further information:
ETH Zurich
Jason Mercer, Postdoctoral Fellow
Telephone +41 (0)44 632 58 18
jason.mercer@bc.biol.ethz.ch
*
Smallpox: a bioterrorist attack?
The vaccinia virus belongs to a family of particularly dangerous viruses, namely the pox viruses. The most infamous member, Variola, the casitive agent of smallpox constituted a global pandemic disease in the Middle Ages, causing the deaths of millions of people, especially among the indigenous population of North America who became infected by European settlers. Pox was the first viral disease against which a vaccination was developed. In 1771, the first rudimentary vaccine was produced from cowpox viruses, which protected people from the sequelae of the disease. Since 1978, the disease has been classed as eradicated and officially is preserved in only two laboratories; one in Atlanta, the other in Novosibirsk. US authorities, however, fear bioterrorist attacks with pox viruses. Research on these dangerous pathogens is thus encouraged.
*
ETH Zurich (Swiss Federal Institute of Technology Zurich) has a student body of nearly fourteen thousand students from 80 nations. About 360 professors teach mainly in engineering sciences and architecture, systems-oriented sciences, mathematics and natural sciences, as well as carry out research that is highly valued worldwide. Distinguished by the successes of 21 Nobel laureates, ETH Zurich is committed to providing its students with unparalleled education and outstanding leadership skills.

Renata Cosby | idw
Further information:
http://www.ethz.ch

Further reports about: Chain Helenius Mercer Pathogen Trojan evagination proteins vaccinia

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>