Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genes associated with aging of the retina

26.06.2002


University of Michigan Kellogg Eye Center researchers have found that the aging of the human retina is accompanied by distinct changes in gene expression.



Using commercially available DNA slides, a team of researchers directed by Anand Swaroop, Ph.D., have established the first-ever gene profile of the aging human retina, an important step in understanding the mechanisms of aging and its impact on vision disorders.

In the August issue of Investigative Ophthalmology and Visual Science, Swaroop and colleagues show that retinal aging is associated, in particular, with expression changes of genes involved in stress response and energy metabolism.


The term gene expression means that in any given cell, only a portion of the genes are expressed or switched on. For example, a person’s pancreas and retina have the same genes, but only the pancreas can turn on the genes that allow it to make insulin.

Swaroop believes that the findings will help scientists understand whether age predisposes one to changes in the retina that, in turn, lead to age-related diseases. For vision researchers, one of the most pressing disorders is age-related macular degeneration (AMD), a progressive eye disease that affects the retina and results in the loss of one’s fine central vision.

"While we still don’t know what causes AMD, we do know that the strongest factors are age and family history," says. Swaroop. "We are likely to find that AMD is caused by a complex interaction between genetic and environmental risk factors."

Microarray technology is an important tool for gene profiling because it allows rapid comparison of thousands of genes, something that was unheard of even few years ago. Shigeo Yoshida, M.D., Ph.D., a post-doctoral research fellow in Swaroop’s laboratory, examined microarray slides containing DNA from 2,400 human genes.

After identifying the genes expressed in the retina (about half, or 1,200 genes), the researchers compared the expression of these retinal genes in young and old individuals and concluded that expression of 24 genes were altered during aging.

Swaroop wonders whether some people carry genetic variations or weaknesses that are expressed clinically later in life. For such persons, the aging process may trigger or reveal the variation, which may then lead to AMD. By contrast, a person who does not carry the variation may undergo a similar degree of genetic or cellular deterioration from aging, without triggering the disease.

A logical next step for the Kellogg researchers is to study a wider array of genes, which Swaroop hopes will lead to a broader understanding of the molecular events that modulate aging of the retina. Under Swaroop’s direction, the U-M Kellogg Eye Center has established a Gene Microarray Facility, which is now generating microarrays of thousands of eye genes.

Kara Gavin | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>