Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genes associated with aging of the retina

26.06.2002


University of Michigan Kellogg Eye Center researchers have found that the aging of the human retina is accompanied by distinct changes in gene expression.



Using commercially available DNA slides, a team of researchers directed by Anand Swaroop, Ph.D., have established the first-ever gene profile of the aging human retina, an important step in understanding the mechanisms of aging and its impact on vision disorders.

In the August issue of Investigative Ophthalmology and Visual Science, Swaroop and colleagues show that retinal aging is associated, in particular, with expression changes of genes involved in stress response and energy metabolism.


The term gene expression means that in any given cell, only a portion of the genes are expressed or switched on. For example, a person’s pancreas and retina have the same genes, but only the pancreas can turn on the genes that allow it to make insulin.

Swaroop believes that the findings will help scientists understand whether age predisposes one to changes in the retina that, in turn, lead to age-related diseases. For vision researchers, one of the most pressing disorders is age-related macular degeneration (AMD), a progressive eye disease that affects the retina and results in the loss of one’s fine central vision.

"While we still don’t know what causes AMD, we do know that the strongest factors are age and family history," says. Swaroop. "We are likely to find that AMD is caused by a complex interaction between genetic and environmental risk factors."

Microarray technology is an important tool for gene profiling because it allows rapid comparison of thousands of genes, something that was unheard of even few years ago. Shigeo Yoshida, M.D., Ph.D., a post-doctoral research fellow in Swaroop’s laboratory, examined microarray slides containing DNA from 2,400 human genes.

After identifying the genes expressed in the retina (about half, or 1,200 genes), the researchers compared the expression of these retinal genes in young and old individuals and concluded that expression of 24 genes were altered during aging.

Swaroop wonders whether some people carry genetic variations or weaknesses that are expressed clinically later in life. For such persons, the aging process may trigger or reveal the variation, which may then lead to AMD. By contrast, a person who does not carry the variation may undergo a similar degree of genetic or cellular deterioration from aging, without triggering the disease.

A logical next step for the Kellogg researchers is to study a wider array of genes, which Swaroop hopes will lead to a broader understanding of the molecular events that modulate aging of the retina. Under Swaroop’s direction, the U-M Kellogg Eye Center has established a Gene Microarray Facility, which is now generating microarrays of thousands of eye genes.

Kara Gavin | EurekAlert!

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>