Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early parents didn’t stand for weighty kids

24.04.2008
Scientists investigating the reasons why early humans – the so-called hominins – began walking upright say it’s unlikely that the need to carry children was a factor, as has previously been suggested.

Carrying babies that could no longer use their feet to cling to their parents in the way that young apes can has long been thought to be at least one explanation as to why humans became bipedal.

But University of Manchester researchers investigating the energy involved in carrying a child say the physical expense to the mother does not support the idea that walking upright was an evolutionary response to child transportation.

“Walking upright is one of the major characteristics that separates humans from their primate relatives,” said Dr Jo Watson, who carried out the research in the University’s Faculty of Life Sciences.

... more about:
»humans »infant »upright »weight

“Scientists have long hypothesised as to the reasons why hominins became bipedal in a relatively short space of time but the truth is we still don’t know for sure.

“One of the more popular explanations is that walking upright freed our forelimbs allowing us to carry objects, including children; apes have no need to carry their young as they are able to grip using both hands and feet.

“Our study focused on the amount of energy required to carry 10kg loads, including a mannequin child. Importantly, the distribution of the weight varied in each instance.”

The team monitored the oxygen consumption of seven women, all healthy individuals under the age of 30, carrying either a symmetric load, in the form of a weighted vest or a 5kg dumbell in each hand, or an asymmetric load, which was a single 10kg weight carried in one hand or a mannequin infant on one hip.

“Carrying an awkward asymmetric load, such as the infant on one side of the body, is the most energetically expensive way of transporting the weight,” said Dr Watson, whose research is published in the Journal of Human Evolution.

“Unless infant carrying resulted in significant benefits elsewhere, the high cost of carrying an asymmetrical weight suggests that infant carrying was unlikely to have been the evolutionary driving force behind bipedalism.”

The study, carried out with colleagues at the Universities of Sheffield and Salford and funded by the Natural Environment Research Council (NERC), is part of a larger project, run by Dr Bill Sellers at The University of Manchester, which uses computer simulations to understand evolutionary processes, particularly the way in which we and other animals move.

Future plans are to extend this work to assess the energy cost of carrying in great apes. Computer models of early hominins carrying loads will also be built to try and evaluate whether their body shape and posture – long arms and short legs – would have made them noticeably better or worse at carrying than present-day humans. The research team hopes this will help build up a picture of how humans evolved to walk on two legs.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: humans infant upright weight

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>