Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Missing Link" Molecule May Offer Clues To Sulfur In Air, Space

26.06.2002


This model depicts hydrogen thioperoxide, or HSOH, a molecule thought to be a "missing link" in its chemical family. Here gray represents hydrogen atoms, yellow a sulfur atom, and red an oxygen atom. Ohio State University physicists and their colleagues in Germany were the first to synthesize the molecule in the laboratory, and record its unique spectrum.
Graphic courtesy of Ohio State University.


A study at Ohio State University is probing the nature of a unique sulfur-containing molecule -- one that scientists consider a "missing link" in its chemical family.

The molecule, hydrogen thioperoxide, or HSOH for short, is related to the common bleaching and disinfectant agent hydrogen peroxide. Because HSOH contains sulfur, it could eventually help scientists understand how pollutants form in Earth’s atmosphere, and how similar molecules form in outer space.

Scientists presented an initial study of the molecule June 18, 2002, at the annual International Symposium on Molecular Spectroscopy at Ohio State University.



A special laboratory instrument is allowing physicists here to study the molecule in detail for the first time. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAST Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

Since the 1960’s, scientists have speculated that a sulfur molecule like HSOH could exist in Earth’s upper atmosphere and outer space. Coal burning power plants, for instance, release sulfur from smokestack exhaust, and HSOH’s other main ingredient -- water -- is abundant in the atmosphere.

But no one was able to synthesize the HSOH in the laboratory until Markus Behnke, a graduate student at the University of Cologne, Germany, did so in 2001. His collaborators on the HSOH synthesis project included Josef Hahn, Gisbert Winnewisser, and Sven Thorwirth at the University of Cologne, and Jürgen Gauss at Johannes Gutenberg University in Mainz, Germany.

Behnke, now a postdoctoral researcher at Ohio State, explained that HSOH is considered a "missing link" molecule. With its mixture of hydrogen, oxygen, and sulfur, it exists somewhere between simple, sulfur-free molecules such as hydrogen peroxide and more complex molecules like sulfuric acid.

In his symposium presentation this week, Behnke reported the first detailed spectroscopic identification of HSOH using FASSST.

The molecule was very difficult to study, because it exists only in extreme conditions: it is created during combustion at very high temperatures, but it breaks down unless it can be transferred quickly to an environment with very low temperature and pressure, such as the upper atmosphere. In addition, the chemical reaction that creates HSOH creates many other similar molecules at the same time.

Given those circumstances, synthesizing HSOH and recording its spectrum in the laboratory wasn’t so much like looking for a needle in a haystack as "looking for an ant somewhere in Canada," Behnke said.

The Ohio State physicists were able to create the molecule in a high-temperature chemical reaction -- approximately 1100°C (2000°F), and used FASSST to image the spectrum.

Scientists could one day use information about HSOH to better understand combustion, atmospheric pollution, and interstellar chemistry.

"This is very fundamental research," Behnke said, "but knowing the structure of simple molecules like HSOH could give us the foundation to understand more complex molecules later."

The National Science Foundation funded this work.

#

Contact: Markus Behnke, (614) 292-1971; Behnke.14@osu.edu
Frank De Lucia, (614) 688-4774; Delucia.2@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Markus Behnke | EurekAlert!
Further information:
http://www.osu.edu/
http://www.nsf.gov/
http://molspect.mps.ohio-state.edu/symposium/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>