Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Missing Link" Molecule May Offer Clues To Sulfur In Air, Space

26.06.2002


This model depicts hydrogen thioperoxide, or HSOH, a molecule thought to be a "missing link" in its chemical family. Here gray represents hydrogen atoms, yellow a sulfur atom, and red an oxygen atom. Ohio State University physicists and their colleagues in Germany were the first to synthesize the molecule in the laboratory, and record its unique spectrum.
Graphic courtesy of Ohio State University.


A study at Ohio State University is probing the nature of a unique sulfur-containing molecule -- one that scientists consider a "missing link" in its chemical family.

The molecule, hydrogen thioperoxide, or HSOH for short, is related to the common bleaching and disinfectant agent hydrogen peroxide. Because HSOH contains sulfur, it could eventually help scientists understand how pollutants form in Earth’s atmosphere, and how similar molecules form in outer space.

Scientists presented an initial study of the molecule June 18, 2002, at the annual International Symposium on Molecular Spectroscopy at Ohio State University.



A special laboratory instrument is allowing physicists here to study the molecule in detail for the first time. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAST Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

Since the 1960’s, scientists have speculated that a sulfur molecule like HSOH could exist in Earth’s upper atmosphere and outer space. Coal burning power plants, for instance, release sulfur from smokestack exhaust, and HSOH’s other main ingredient -- water -- is abundant in the atmosphere.

But no one was able to synthesize the HSOH in the laboratory until Markus Behnke, a graduate student at the University of Cologne, Germany, did so in 2001. His collaborators on the HSOH synthesis project included Josef Hahn, Gisbert Winnewisser, and Sven Thorwirth at the University of Cologne, and Jürgen Gauss at Johannes Gutenberg University in Mainz, Germany.

Behnke, now a postdoctoral researcher at Ohio State, explained that HSOH is considered a "missing link" molecule. With its mixture of hydrogen, oxygen, and sulfur, it exists somewhere between simple, sulfur-free molecules such as hydrogen peroxide and more complex molecules like sulfuric acid.

In his symposium presentation this week, Behnke reported the first detailed spectroscopic identification of HSOH using FASSST.

The molecule was very difficult to study, because it exists only in extreme conditions: it is created during combustion at very high temperatures, but it breaks down unless it can be transferred quickly to an environment with very low temperature and pressure, such as the upper atmosphere. In addition, the chemical reaction that creates HSOH creates many other similar molecules at the same time.

Given those circumstances, synthesizing HSOH and recording its spectrum in the laboratory wasn’t so much like looking for a needle in a haystack as "looking for an ant somewhere in Canada," Behnke said.

The Ohio State physicists were able to create the molecule in a high-temperature chemical reaction -- approximately 1100°C (2000°F), and used FASSST to image the spectrum.

Scientists could one day use information about HSOH to better understand combustion, atmospheric pollution, and interstellar chemistry.

"This is very fundamental research," Behnke said, "but knowing the structure of simple molecules like HSOH could give us the foundation to understand more complex molecules later."

The National Science Foundation funded this work.

#

Contact: Markus Behnke, (614) 292-1971; Behnke.14@osu.edu
Frank De Lucia, (614) 688-4774; Delucia.2@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Markus Behnke | EurekAlert!
Further information:
http://www.osu.edu/
http://www.nsf.gov/
http://molspect.mps.ohio-state.edu/symposium/

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>