Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Missing Link" Molecule May Offer Clues To Sulfur In Air, Space

26.06.2002


This model depicts hydrogen thioperoxide, or HSOH, a molecule thought to be a "missing link" in its chemical family. Here gray represents hydrogen atoms, yellow a sulfur atom, and red an oxygen atom. Ohio State University physicists and their colleagues in Germany were the first to synthesize the molecule in the laboratory, and record its unique spectrum.
Graphic courtesy of Ohio State University.


A study at Ohio State University is probing the nature of a unique sulfur-containing molecule -- one that scientists consider a "missing link" in its chemical family.

The molecule, hydrogen thioperoxide, or HSOH for short, is related to the common bleaching and disinfectant agent hydrogen peroxide. Because HSOH contains sulfur, it could eventually help scientists understand how pollutants form in Earth’s atmosphere, and how similar molecules form in outer space.

Scientists presented an initial study of the molecule June 18, 2002, at the annual International Symposium on Molecular Spectroscopy at Ohio State University.



A special laboratory instrument is allowing physicists here to study the molecule in detail for the first time. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAST Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

Since the 1960’s, scientists have speculated that a sulfur molecule like HSOH could exist in Earth’s upper atmosphere and outer space. Coal burning power plants, for instance, release sulfur from smokestack exhaust, and HSOH’s other main ingredient -- water -- is abundant in the atmosphere.

But no one was able to synthesize the HSOH in the laboratory until Markus Behnke, a graduate student at the University of Cologne, Germany, did so in 2001. His collaborators on the HSOH synthesis project included Josef Hahn, Gisbert Winnewisser, and Sven Thorwirth at the University of Cologne, and Jürgen Gauss at Johannes Gutenberg University in Mainz, Germany.

Behnke, now a postdoctoral researcher at Ohio State, explained that HSOH is considered a "missing link" molecule. With its mixture of hydrogen, oxygen, and sulfur, it exists somewhere between simple, sulfur-free molecules such as hydrogen peroxide and more complex molecules like sulfuric acid.

In his symposium presentation this week, Behnke reported the first detailed spectroscopic identification of HSOH using FASSST.

The molecule was very difficult to study, because it exists only in extreme conditions: it is created during combustion at very high temperatures, but it breaks down unless it can be transferred quickly to an environment with very low temperature and pressure, such as the upper atmosphere. In addition, the chemical reaction that creates HSOH creates many other similar molecules at the same time.

Given those circumstances, synthesizing HSOH and recording its spectrum in the laboratory wasn’t so much like looking for a needle in a haystack as "looking for an ant somewhere in Canada," Behnke said.

The Ohio State physicists were able to create the molecule in a high-temperature chemical reaction -- approximately 1100°C (2000°F), and used FASSST to image the spectrum.

Scientists could one day use information about HSOH to better understand combustion, atmospheric pollution, and interstellar chemistry.

"This is very fundamental research," Behnke said, "but knowing the structure of simple molecules like HSOH could give us the foundation to understand more complex molecules later."

The National Science Foundation funded this work.

#

Contact: Markus Behnke, (614) 292-1971; Behnke.14@osu.edu
Frank De Lucia, (614) 688-4774; Delucia.2@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Markus Behnke | EurekAlert!
Further information:
http://www.osu.edu/
http://www.nsf.gov/
http://molspect.mps.ohio-state.edu/symposium/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>