Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogen virulence proteins suppress plant immunity

23.04.2008
Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and their colleagues have identified a key function of a large family of virulence proteins that play an important role in the production of infectious disease by the plant pathogen Phytophthora sojae.

VBI Professor Brett Tyler and members of his research group, along with researchers from Virginia Tech’s Department of Plant Pathology, Physiology and Weed Science, Nanjing Agricultural University in China, and Wageningen University in The Netherlands, examined the function of the virulence (or effector) protein Avr1b in P. sojae and discovered that Avr1b is capable of suppressing an important process in plant immunity called programmed cell death. Programmed cell death is an in-built suicide mechanism that kills infected plant tissue and fills it with toxins so the pathogen can no longer feed on it. The work appears in the advance online edition of The Plant Cell. (1)

P. sojae is an oomycete plant pathogen that causes severe damage to soybean crops, resulting in $1-2 million in annual losses for commercial farmers in the United States and much more worldwide. By changing key amino acid residues in the effector protein, the researchers were able to attribute the cause of the suppression of programmed cell death to the presence of two conserved sequences (dubbed W and Y motifs) at one particular end of the protein, the C-terminus. These amino acid sequences are also present in many other members of a huge virulence gene superfamily that Tyler’s group found recently in oomycete pathogens. (2)

According to VBI Professor Brett Tyler, “Our results suggest that, like many human viruses such as HIV, oomycete plant pathogens disable the immune systems of their victims as part of their infection strategy.”

... more about:
»Pathogen »effector »sojae »virulence

The research was supported by funding from the National Research Initiative of the United States Department of Agriculture’s Cooperative State Research, Education and Extension Service, the National Science Foundation, the Government of China, and the Netherlands Genomics Initiative.

(1) Daolong D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell Published on April 4, 2008; 10.1105/tpc.107.057067.

(2) Jiang R, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl Acad. Sci. USA 105(12): 4874-4879.

Susan Bland | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: Pathogen effector sojae virulence

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>