Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation triggers cell fusions that could protect neurons

22.04.2008
Chronic inflammation triggers bone marrow-derived blood cells to travel to the brain and fuse with a certain type of neuron up to 100 times more frequently than previously believed, according to a new study from the Stanford University School of Medicine.

After the fusion, the blood-cell nuclei begin to express previously silent, neuron-specific genes. The surprise finding in mice suggests that the creation of the fused cells, called heterokaryons, may possibly play a role in protecting neurons against damage and may open new doors to cell-mediated gene therapy.

"This finding was totally unprecedented and unexpected," said senior author Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor and director of the Baxter Laboratory in Genetic Pharmacology. "We're getting hints that this might be biologically important, but we still have a lot to learn." The research, led by Clas Johansson, PhD, a postdoctoral scholar in Blau's laboratory, will be published online in Nature Cell Biology on April 20.

The bone marrow-derived cells are known as blood stem cells, or hematopoietic stem cells. They can give rise to all the blood and immune cells in the body. Although the progeny of these hematopoietic stem cells have previously been shown to fuse with a variety of other cell types in the body, this fusion occurs so infrequently that it had been thought to have little biological significance.

Purkinje neurons are large cells in a portion of the brain known as the cerebellum, which is involved in balance and motor control. They form junctions between many other neurons, and they do not regenerate. They are the only cell in the brain shown by Blau and others to fuse with these bone marrow-derived cells in mice and humans.

Previous studies investigating this cell fusion in mice relied on the use of lethal doses of radiation to abolish one mouse's hematopoietic system prior to introducing blood stem cells engineered to express a green fluorescent protein. The new blood stem cells would then entirely repopulate the animal's now-absent hematopoietic system with green-fluorescing cells whose origin could be easily identified. The researchers could then pick out heterokaryons in the brain by looking for green neurons against a neutral background.

The researchers, in collaboration with scientists at the University of British Columbia in Vancouver, used this technique in the current study to transplant a single hematopoietic stem cell and prove that the heterokaryons in the brain were derived from blood. However, because such high doses of radiation are known to break down the natural barrier that restricts the flow of cells and molecules between the brain and the blood, Blau and her colleagues wondered if this fusion would still occur under less physiologically traumatic conditions.

They used a technique called parabiosis to introduce blood cells expressing green fluorescent protein into an unmodified animal. In parabiosis, two mice are surgically joined in such a way that they share a circulatory system. One mouse had been engineered to express the green protein in all its cells, and one had not. Because the animals shared a blood supply for several weeks, about half of the blood cells in the unmodified mouse expressed the green protein-enough to enable the researchers to detect fused cells in the brain.

The researchers found evidence of fusion between blood cells and Purkinje neurons in this radiation-free system 20 to 26 weeks after surgery. In fact, green heterokaryons were identifiable for up to 20 weeks after the mice were separated, when most of the blood cells in the unmodified mouse had been regenerated as non-colored cells.

But then Johansson saw something surprising. As in previous experiments, most of the mice had very low numbers of fused cells in their cerebellums, but a few had more. Up to 100 times more.

"Clas noted significantly more heterokaryons than we ever had in the past," said Blau, "from fewer than 10 in an entire animal to several hundred." When the researchers looked more closely, they found that those animals with higher-than-expected numbers of fused cells also had an inflammatory skin condition common to aging laboratory mice called idiopathic ulcerative dermatitis. This type of chronic inflammation affects the entire immune system of the animal and causes a systemwide immune response.

The researchers confirmed that the remarkable increase in the numbers of fused cells was related to inflammation by using the traditional radiation/bone marrow transplant approach in mice with dermatitis. Finally, they counted the fused cells that formed in a mouse model of multiple sclerosis - an autoimmune disease characterized by inflammation and damage of the central nervous system. Neurologist and multiple sclerosis specialist Lawrence Steinman, MD, professor of neurology and neurological sciences at the medical school, co-authored the research and provided the mouse model for study. Heterokaryons in some of these mice numbered in the thousands.

Even more intriguing than the inflammation-induced increase in numbers was a cross-species experiment that showed nuclei from rat blood stem cells that had fused to Purkinje cells in mice stop expressing blood cell proteins and begin to express rat neuron-specific gene products. This switch exemplifies a type of genetic reprogramming that has been a source of ongoing debate and great interest in the world of stem cell research. Such reprogramming is critical to the regeneration of functional tissues by stem cells.

"What we're seeing is that this phenomenon is happening in real life," said Blau, who next plans to study whether such fusions can rescue damaged or dying Purkinje neurons. "We don't know yet if this function is beneficial, but we now know that there are sites where it happens at fairly high frequencies under certain conditions, and that these nuclei can even be reprogrammed."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Condition Express Neuron fused hematopoietic heterokaryons inflammation stem cells

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>