Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation triggers cell fusions that could protect neurons

22.04.2008
Chronic inflammation triggers bone marrow-derived blood cells to travel to the brain and fuse with a certain type of neuron up to 100 times more frequently than previously believed, according to a new study from the Stanford University School of Medicine.

After the fusion, the blood-cell nuclei begin to express previously silent, neuron-specific genes. The surprise finding in mice suggests that the creation of the fused cells, called heterokaryons, may possibly play a role in protecting neurons against damage and may open new doors to cell-mediated gene therapy.

"This finding was totally unprecedented and unexpected," said senior author Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor and director of the Baxter Laboratory in Genetic Pharmacology. "We're getting hints that this might be biologically important, but we still have a lot to learn." The research, led by Clas Johansson, PhD, a postdoctoral scholar in Blau's laboratory, will be published online in Nature Cell Biology on April 20.

The bone marrow-derived cells are known as blood stem cells, or hematopoietic stem cells. They can give rise to all the blood and immune cells in the body. Although the progeny of these hematopoietic stem cells have previously been shown to fuse with a variety of other cell types in the body, this fusion occurs so infrequently that it had been thought to have little biological significance.

Purkinje neurons are large cells in a portion of the brain known as the cerebellum, which is involved in balance and motor control. They form junctions between many other neurons, and they do not regenerate. They are the only cell in the brain shown by Blau and others to fuse with these bone marrow-derived cells in mice and humans.

Previous studies investigating this cell fusion in mice relied on the use of lethal doses of radiation to abolish one mouse's hematopoietic system prior to introducing blood stem cells engineered to express a green fluorescent protein. The new blood stem cells would then entirely repopulate the animal's now-absent hematopoietic system with green-fluorescing cells whose origin could be easily identified. The researchers could then pick out heterokaryons in the brain by looking for green neurons against a neutral background.

The researchers, in collaboration with scientists at the University of British Columbia in Vancouver, used this technique in the current study to transplant a single hematopoietic stem cell and prove that the heterokaryons in the brain were derived from blood. However, because such high doses of radiation are known to break down the natural barrier that restricts the flow of cells and molecules between the brain and the blood, Blau and her colleagues wondered if this fusion would still occur under less physiologically traumatic conditions.

They used a technique called parabiosis to introduce blood cells expressing green fluorescent protein into an unmodified animal. In parabiosis, two mice are surgically joined in such a way that they share a circulatory system. One mouse had been engineered to express the green protein in all its cells, and one had not. Because the animals shared a blood supply for several weeks, about half of the blood cells in the unmodified mouse expressed the green protein-enough to enable the researchers to detect fused cells in the brain.

The researchers found evidence of fusion between blood cells and Purkinje neurons in this radiation-free system 20 to 26 weeks after surgery. In fact, green heterokaryons were identifiable for up to 20 weeks after the mice were separated, when most of the blood cells in the unmodified mouse had been regenerated as non-colored cells.

But then Johansson saw something surprising. As in previous experiments, most of the mice had very low numbers of fused cells in their cerebellums, but a few had more. Up to 100 times more.

"Clas noted significantly more heterokaryons than we ever had in the past," said Blau, "from fewer than 10 in an entire animal to several hundred." When the researchers looked more closely, they found that those animals with higher-than-expected numbers of fused cells also had an inflammatory skin condition common to aging laboratory mice called idiopathic ulcerative dermatitis. This type of chronic inflammation affects the entire immune system of the animal and causes a systemwide immune response.

The researchers confirmed that the remarkable increase in the numbers of fused cells was related to inflammation by using the traditional radiation/bone marrow transplant approach in mice with dermatitis. Finally, they counted the fused cells that formed in a mouse model of multiple sclerosis - an autoimmune disease characterized by inflammation and damage of the central nervous system. Neurologist and multiple sclerosis specialist Lawrence Steinman, MD, professor of neurology and neurological sciences at the medical school, co-authored the research and provided the mouse model for study. Heterokaryons in some of these mice numbered in the thousands.

Even more intriguing than the inflammation-induced increase in numbers was a cross-species experiment that showed nuclei from rat blood stem cells that had fused to Purkinje cells in mice stop expressing blood cell proteins and begin to express rat neuron-specific gene products. This switch exemplifies a type of genetic reprogramming that has been a source of ongoing debate and great interest in the world of stem cell research. Such reprogramming is critical to the regeneration of functional tissues by stem cells.

"What we're seeing is that this phenomenon is happening in real life," said Blau, who next plans to study whether such fusions can rescue damaged or dying Purkinje neurons. "We don't know yet if this function is beneficial, but we now know that there are sites where it happens at fairly high frequencies under certain conditions, and that these nuclei can even be reprogrammed."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Condition Express Neuron fused hematopoietic heterokaryons inflammation stem cells

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>