Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation triggers cell fusions that could protect neurons

22.04.2008
Chronic inflammation triggers bone marrow-derived blood cells to travel to the brain and fuse with a certain type of neuron up to 100 times more frequently than previously believed, according to a new study from the Stanford University School of Medicine.

After the fusion, the blood-cell nuclei begin to express previously silent, neuron-specific genes. The surprise finding in mice suggests that the creation of the fused cells, called heterokaryons, may possibly play a role in protecting neurons against damage and may open new doors to cell-mediated gene therapy.

"This finding was totally unprecedented and unexpected," said senior author Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor and director of the Baxter Laboratory in Genetic Pharmacology. "We're getting hints that this might be biologically important, but we still have a lot to learn." The research, led by Clas Johansson, PhD, a postdoctoral scholar in Blau's laboratory, will be published online in Nature Cell Biology on April 20.

The bone marrow-derived cells are known as blood stem cells, or hematopoietic stem cells. They can give rise to all the blood and immune cells in the body. Although the progeny of these hematopoietic stem cells have previously been shown to fuse with a variety of other cell types in the body, this fusion occurs so infrequently that it had been thought to have little biological significance.

Purkinje neurons are large cells in a portion of the brain known as the cerebellum, which is involved in balance and motor control. They form junctions between many other neurons, and they do not regenerate. They are the only cell in the brain shown by Blau and others to fuse with these bone marrow-derived cells in mice and humans.

Previous studies investigating this cell fusion in mice relied on the use of lethal doses of radiation to abolish one mouse's hematopoietic system prior to introducing blood stem cells engineered to express a green fluorescent protein. The new blood stem cells would then entirely repopulate the animal's now-absent hematopoietic system with green-fluorescing cells whose origin could be easily identified. The researchers could then pick out heterokaryons in the brain by looking for green neurons against a neutral background.

The researchers, in collaboration with scientists at the University of British Columbia in Vancouver, used this technique in the current study to transplant a single hematopoietic stem cell and prove that the heterokaryons in the brain were derived from blood. However, because such high doses of radiation are known to break down the natural barrier that restricts the flow of cells and molecules between the brain and the blood, Blau and her colleagues wondered if this fusion would still occur under less physiologically traumatic conditions.

They used a technique called parabiosis to introduce blood cells expressing green fluorescent protein into an unmodified animal. In parabiosis, two mice are surgically joined in such a way that they share a circulatory system. One mouse had been engineered to express the green protein in all its cells, and one had not. Because the animals shared a blood supply for several weeks, about half of the blood cells in the unmodified mouse expressed the green protein-enough to enable the researchers to detect fused cells in the brain.

The researchers found evidence of fusion between blood cells and Purkinje neurons in this radiation-free system 20 to 26 weeks after surgery. In fact, green heterokaryons were identifiable for up to 20 weeks after the mice were separated, when most of the blood cells in the unmodified mouse had been regenerated as non-colored cells.

But then Johansson saw something surprising. As in previous experiments, most of the mice had very low numbers of fused cells in their cerebellums, but a few had more. Up to 100 times more.

"Clas noted significantly more heterokaryons than we ever had in the past," said Blau, "from fewer than 10 in an entire animal to several hundred." When the researchers looked more closely, they found that those animals with higher-than-expected numbers of fused cells also had an inflammatory skin condition common to aging laboratory mice called idiopathic ulcerative dermatitis. This type of chronic inflammation affects the entire immune system of the animal and causes a systemwide immune response.

The researchers confirmed that the remarkable increase in the numbers of fused cells was related to inflammation by using the traditional radiation/bone marrow transplant approach in mice with dermatitis. Finally, they counted the fused cells that formed in a mouse model of multiple sclerosis - an autoimmune disease characterized by inflammation and damage of the central nervous system. Neurologist and multiple sclerosis specialist Lawrence Steinman, MD, professor of neurology and neurological sciences at the medical school, co-authored the research and provided the mouse model for study. Heterokaryons in some of these mice numbered in the thousands.

Even more intriguing than the inflammation-induced increase in numbers was a cross-species experiment that showed nuclei from rat blood stem cells that had fused to Purkinje cells in mice stop expressing blood cell proteins and begin to express rat neuron-specific gene products. This switch exemplifies a type of genetic reprogramming that has been a source of ongoing debate and great interest in the world of stem cell research. Such reprogramming is critical to the regeneration of functional tissues by stem cells.

"What we're seeing is that this phenomenon is happening in real life," said Blau, who next plans to study whether such fusions can rescue damaged or dying Purkinje neurons. "We don't know yet if this function is beneficial, but we now know that there are sites where it happens at fairly high frequencies under certain conditions, and that these nuclei can even be reprogrammed."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Condition Express Neuron fused hematopoietic heterokaryons inflammation stem cells

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>