Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase researchers discover a method for clamping down on a cancer-promoting enzyme

22.04.2008
There are many pathways that allow an errant gene to turn a cell cancerous, and a number of these pathways go through a single enzyme called the p21-activated kinase 1, or PAK1.

Researchers at Fox Chase Cancer Center have now identified a molecule capable of shutting down PAK1 before the enzyme becomes active. Previous studies have linked PAK1 activity with breast cancer and have shown the enzyme is important in pathways involving the ras oncogene, which is thought to cause up to 30 percent of all cancers.

In the April 24 issue of the journal Chemistry & Biology, the researchers detail how the molecule, called IPA-3, was found from a screen of nearly 33,000 small molecules, and could serve as a basis for future breast cancer or cancer therapeutics. Cell-based studies using IPA-3 confirm that the molecule is capable of blocking signaling by the PAK1 pathway.

“Previous work suggested that hyperactive signaling by PAK1 can contribute to the growth of tumors, but the trick is how to selectively block PAK1 without damaging similar enzymes that are crucial for healthy cellular function,” said lead investigator Jeffrey R. Peterson, Ph.D, an associate member of Fox Chase. “IPA-3 represents a proof-of-principle, illustrating a new and highly selective approach to targeting PAK1.”

... more about:
»Active »IPA-3 »Kinase »PAK1 »Peterson »bind »enzyme »therapeutic

PAK1, like all kinases, is an enzyme that regulates other proteins by attaching an energetic molecule to them in a process known as phosphorylation. The “active site” where the phosphorylation reaction occurs is an attractive target for drug development, since blocking the active site would deactivate the enzyme. Unfortunately, the active site of PAK1 shares a molecular architecture similar to that found in many other kinase enzymes. Previous attempts to inhibit the PAK1 active site chemically have also resulted in inhibiting PAK1-related enzymes, with toxic consequences.

Instead of finding another molecule that binds to the active site, Peterson and his Fox Chase colleagues looked for new molecules that inactivate PAK1 in other ways. The cancer drug Gleevec, for example, is unusually selective for its target by binding to a region outside of the active site that is less common among kinases.

“Many other kinases, including PAK1, have unique regions outside the active site that mediate important facets of their function such as localization, substrate recruitment, or regulation,” Peterson says. “We wondered whether these regions might offer other places for molecules to bind and inhibit PAK1 without affecting other enzymes.”

According to Peterson, IPA-3 achieves high selectivity for PAK1 by taking advantage of a unique self-regulating region of the enzyme. The PAK1 protein has an auto-regulatory arm, a structure that PAK1 folds over its own active site when the enzyme is not in use. Their findings suggest that IPA-3 binds to the protein when it is in the closed configuration, which then prevents PAK1 from becoming active.

“It is like when the Steve Irwin would subdue a crocodile, he would tape its jaws closed to keep it from biting,” Peterson says. “Likewise, IPA-3 latches onto PAK1 in a way that prevents PAK1 from exposing its active site.”

Peterson and his colleagues, found IPA-3 by screening a library of over 33,000 small molecules for their ability to block phosphorylation by pure PAK1 protein. Any small molecules that blocked PAK1 were noted and were then ranked by potency, reproducibility and commercial availability. IPA-3 came out ahead of the others through this winnowing process, and the researchers then tested IPA-3 to demonstrate that it could also inhibit PAK1 activity inside living cells.

The Fox Chase researchers believe that IPA-3 represents a promising new strategy for creating therapeutics that inhibit PAK1 by mimicking the way cellular enzymes self-regulate in real life, but the IPA-3 molecule itself is not suitable as a therapeutic in its current form. “IPA-3 requires further experimental study and refinement before it could become a working drug for humans,” Peterson says.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Active IPA-3 Kinase PAK1 Peterson bind enzyme therapeutic

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>