Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find potential in yeast for selecting Lou Gehrig's disease drugs

22.04.2008
Researchers from the University of Pennsylvania School of Medicine are developing a novel approach to screen for drugs to combat neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, using yeast cells. In recent months a number of mutations have been found in a disease protein called TDP-43, which is implicated in ALS and certain types of frontotemporal dementia (FTD).

“We've created a yeast model, the same cells that bakers and brewers use to make bread and beer, to express TDP-43,” explains lead author Aaron D. Gitler, PhD, Assistant Professor of Cell and Developmental Biology. “Remarkably, this protein formed clumps in our simple yeast cells just like it does in human nerve cells. In our paper we determine which segments of the mutated TDP-43 protein cause it to aggregate and which parts cause it to be toxic.” Gitler and colleagues report their findings in this week’s advance online issue of the Proceedings of the National Academy of Sciences.

Two years ago, other Penn investigators found that TDP-43 accumulated abnormally in post-mortem brain or nervous system tissue from individuals diagnosed with either ALS or FTD. TDP-43 is normally involved in RNA and DNA processing, among other cellular tasks. The recent TDP-43 mutation studies confirm the protein’s role in causing disease.

The clumping process of proteins takes decades in humans but the researchers could model the process within a matter of hours in yeast cells. This now allows for rapid genetic screening to identify proteins that can reverse the harmful effects of the disease protein; visualizing the clumping; and testing molecules that could eliminate or prevent clumping.

... more about:
»Disease »FTD »Gitler »Mutation »Screen »TDP-43 »clumps »toxic »yeast

“Our yeast model will be a powerful tool for performing large-scale drug screens to look for small molecules that can prevent TDP-43 from aggregating or that can protect cells from aggregated TDP-43,” notes Gitler.

Normally, TDP-43 stays in the nucleus, but in ALS and FTD it somehow gets sequestered into the cell’s cytoplasm, where it forms clumps. “When we put TDP-43 in yeast cells at normal human levels, it remained in the nucleus,” explains Gitler. “However, when it was expressed at higher levels, thereby overwhelming the quality control systems of the cell, TDP-43 clumped in the cytoplasm. At even higher levels, TDP-43 became toxic to the yeast cells, making them unable to grow.” This experiment suggests, for the first time, that TDP-43 clumps can be a direct cause of cell toxicity.

In earlier studies at Penn, researchers found fragments of TDP-43 that were abundant in the clumps found in the post-mortem tissue of ALS and FTD patients. Knowing this, Gitler and colleagues chopped TDP-43 into many fragments to find the segments that are responsible for clumping and toxicity. They found a very similar segment that was also toxic to yeast cells. Designs of future drugs will depend on what part of the TDP-43 protein needs to be disabled.

The researchers are able to overexpress every yeast gene to determine which genes can rescue the yeast cells from the TDP-43 toxicity. In addition to these genetic screens, Gitler and colleagues are pursuing drug screens with their TDP-43 model. “We can screen hundreds of thousands of small molecules to see which can get into a yeast cell and prevent TDP-43 from being toxic,” says Gitler. “Then we can take the hits we find and test them in animal models. We have already made mutations identical to what have been found in patients and have introduced those in the yeast model.”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Disease FTD Gitler Mutation Screen TDP-43 clumps toxic yeast

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>