Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find potential in yeast for selecting Lou Gehrig's disease drugs

22.04.2008
Researchers from the University of Pennsylvania School of Medicine are developing a novel approach to screen for drugs to combat neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, using yeast cells. In recent months a number of mutations have been found in a disease protein called TDP-43, which is implicated in ALS and certain types of frontotemporal dementia (FTD).

“We've created a yeast model, the same cells that bakers and brewers use to make bread and beer, to express TDP-43,” explains lead author Aaron D. Gitler, PhD, Assistant Professor of Cell and Developmental Biology. “Remarkably, this protein formed clumps in our simple yeast cells just like it does in human nerve cells. In our paper we determine which segments of the mutated TDP-43 protein cause it to aggregate and which parts cause it to be toxic.” Gitler and colleagues report their findings in this week’s advance online issue of the Proceedings of the National Academy of Sciences.

Two years ago, other Penn investigators found that TDP-43 accumulated abnormally in post-mortem brain or nervous system tissue from individuals diagnosed with either ALS or FTD. TDP-43 is normally involved in RNA and DNA processing, among other cellular tasks. The recent TDP-43 mutation studies confirm the protein’s role in causing disease.

The clumping process of proteins takes decades in humans but the researchers could model the process within a matter of hours in yeast cells. This now allows for rapid genetic screening to identify proteins that can reverse the harmful effects of the disease protein; visualizing the clumping; and testing molecules that could eliminate or prevent clumping.

... more about:
»Disease »FTD »Gitler »Mutation »Screen »TDP-43 »clumps »toxic »yeast

“Our yeast model will be a powerful tool for performing large-scale drug screens to look for small molecules that can prevent TDP-43 from aggregating or that can protect cells from aggregated TDP-43,” notes Gitler.

Normally, TDP-43 stays in the nucleus, but in ALS and FTD it somehow gets sequestered into the cell’s cytoplasm, where it forms clumps. “When we put TDP-43 in yeast cells at normal human levels, it remained in the nucleus,” explains Gitler. “However, when it was expressed at higher levels, thereby overwhelming the quality control systems of the cell, TDP-43 clumped in the cytoplasm. At even higher levels, TDP-43 became toxic to the yeast cells, making them unable to grow.” This experiment suggests, for the first time, that TDP-43 clumps can be a direct cause of cell toxicity.

In earlier studies at Penn, researchers found fragments of TDP-43 that were abundant in the clumps found in the post-mortem tissue of ALS and FTD patients. Knowing this, Gitler and colleagues chopped TDP-43 into many fragments to find the segments that are responsible for clumping and toxicity. They found a very similar segment that was also toxic to yeast cells. Designs of future drugs will depend on what part of the TDP-43 protein needs to be disabled.

The researchers are able to overexpress every yeast gene to determine which genes can rescue the yeast cells from the TDP-43 toxicity. In addition to these genetic screens, Gitler and colleagues are pursuing drug screens with their TDP-43 model. “We can screen hundreds of thousands of small molecules to see which can get into a yeast cell and prevent TDP-43 from being toxic,” says Gitler. “Then we can take the hits we find and test them in animal models. We have already made mutations identical to what have been found in patients and have introduced those in the yeast model.”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Disease FTD Gitler Mutation Screen TDP-43 clumps toxic yeast

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>