Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists seek to defeat brain cancer by chipping away its foundation from various angles

22.04.2008
Nanomedicine, immunotherapy, stem cells and gene discovery are some of the specialty areas converging on deadly, aggressive brain tumors.

Scientists at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute, working from a variety of disciplines and perspectives, are dissecting the complex biological events from which malignant brain tumors emerge, grow and acquire defense mechanisms that make them highly resistant to treatment.

Under the direction of neurosurgeon Keith L. Black, M.D., chairman of the Department of Neurosurgery at Cedars-Sinai and director of the institute, the research teams have compiled a series of “firsts” over the past decade. They recently:

· Identified underlying processes by which immune activity controls key cancer-causing genes in gliomas. As a result of these and related discoveries, the researchers will attempt to design personalized treatment plans using combinations of vaccination, chemotherapy and stem cell-blocking agents. A dendritic cell vaccine developed by Black and his colleagues and currently in a Phase II patient trial has already been found to increase length of survival when combined with chemotherapy.

· Conferred a molecular property from certain immune system cells to others, combining the best of both cells. Certain T cells are more effective than others in stimulating an immune response, but they become scarcer with age. The researchers “transferred” a beneficial molecular property to cells that do not diminish with age, improving response against tumors and entry into the brain in preclinical trials. The goal is to induce anti-tumor immunity in patients who do not respond to vaccination and increase immune strength in those who do.

· Developed molecular signatures of brain tumor stem cells to identify mechanisms by which malignant tumors renew themselves and propagate. A tumor’s unique molecular profile may eventually be used to develop an individualized treatment to block its signaling mechanisms. Previously, the Cedars-Sinai researchers isolated cancer stem cells from malignant brain tumors and documented that these cells are resistant to conventional chemotherapy.

· Generated neural stem cells from adult bone marrow and documented that they have properties similar to neural stem cells from the brain, demonstrated the ability of neural stem cells to target and track brain tumor cells even as they migrate, described a mechanism that turns on the tumor-tracking activity of stem cells, and engineered stem cells to deliver a cancer-fighting protein (TRAIL) or an immune activating protein (interleukin-12) in preclinical models.

· Found that laminin-411, a protein that is synthesized by tumor cells and deposited in newly formed tumor blood vessels, is over-expressed in human glioblastoma multiforme (GBM). Subsequently, the researchers found they could reduce a tumor’s ability to invade neighboring tissue by blocking the expression of laminin-411, and they identified over-expression of laminin-411 as a predictor of tumor grade and potential for recurrence, as well as patient length of survival.

· Developed a new nanotechnology-based drug delivery system precisely targeting cancer cells. Using this nanobioconjugate delivery system (named Polycefin), anti-cancer drugs in high concentration may accumulate selectively in tumor without affecting normal cells. The nanobioconjugate allows several agents to be delivered at the same time for a synergistic anti-tumor effect. A version of Polycefin designed to block the expression of laminin-411 protein prevented the formation of new tumor blood vessels and, as a result, increased survival in pre-human models of brain cancer.

· Significantly increased drug delivery across the blood-brain-tumor barrier (BTB), and extended this effort to include not only primary brain tumors but cancers metastasizing to the brain.

· Collaborated with other scientists on several studies using radioactive iodine (131I) and TM-601, a synthetic version of the venom of the giant yellow Israeli scorpion. TM-601 attaches to glioma cells and is taken into the cells permanently, making it useful for the localized delivery of radioactive iodine. A Phase III international clinical trial is planned, as is a Phase I and II study using TM-601 alone because it not only targets tumor cells but appears to inhibit tumor growth.

· Worked with colleagues at Cedars-Sinai’s Minimally Invasive Surgical Technologies Institute (MISTI) to develop an optical system (time-resolved laser-induced fluorescence spectroscopy) that may make it possible to diagnose tumors without biopsies.

The Maxine Dunitz Neurosurgical Institute opened at Cedars-Sinai on July 1, 1997, designed by Black to concentrate the intellect, inspiration and energy of a few top scientists on the goal of discovering and defeating the complex and intricate mechanisms that support malignant brain tumors.

The institute’s centerpiece is a dendritic cell vaccine for patients who are battling these cancers, which evade and resist the immune system. First used in patient treatment in May 1998, the vaccine is intended to activate an immune response to the cancer cells. It is currently in a Phase II clinical trial.

“According to early results, we have been able to increase the two-year survival from about eight percent to 42 percent,” Black said. In one study, the median length of survival of patients with recurrent glioblastoma whose treatment included the vaccine was 133 weeks – about two and a half years. A similar group of patients receiving the same level of care but not the vaccine had a median survival of only 30 weeks.

Sandy Van | Cedars-Sinai Media Relations
Further information:
http://www.cedars-sinai.edu/

Further reports about: Black Molecular Treatment Vaccine laminin-411 malignant stem cells trial

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>