Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies against bird flu

21.04.2008
Austrian scientists identify the common mechanism underlying acute respiratory disease syndrome ARDS

The Spanish flu outbreak of 1918 killed between 30 and 50 million people. In the infected patients, the ultimate cause of death was acute respiratory distress syndrome (ARDS). This fatal condition is a massive reaction of the body during which the lung becomes severely damaged. ARDS can be induced by various bacterial and viral infections, but also by chemical agents. These could be toxic gases that are inhaled or gastric acid when aspirated. Once ARDS has developed, survival rates drop dramatically. Among patients infected with H5N1 bird flu, about 50 percent die of ARDS.

An international team of scientists has been addressing the underlying disease mechanisms for the past five years. The team involved researchers from leading institutions in Vienna, Stockholm, Cologne, Beijing, Hongkong, and Toronto as well as the US-army at Fort Detrick. The international effort was coordinated by Josef Penninger and Yumiko Imai of the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences.

A first breakthrough came in 2005 when IMBA-scientists identified ACE2 as the essential receptor for SARS virus infections and showed that ACE2 can protect from acute lung failure in disease models (Imai et al. Nature 2005; Kuba et al. Nature Medicine 2005). Based on these data, ACE2 is now under therapeutic development.

... more about:
»ARDS »Imai »TLR4 »acute »common »failure »flu

In a paper published by Cell this week, the authors describe an essential key injury pathway that is operational in multiple lung injuries and directly links oxidative stress to innate immunity. They also report for the first time a common molecular disease pathway explaining how diverse non-infectious and infectious agents such as anthrax, lung plague, SARS, and H5N1 avian influenza may cause severe and often lethal lung failure with similar pathologies.

To identify these pathways, the researchers studied numerous tissue samples from deceased humans and animals. Victims of bird flu and SARS were examined in Hongkong, and the US-army provided samples from animals infected with Anthrax and lung plague. Common to all ARDS samples was the massive amount of oxidation products found within the cells. Based on these findings, the scientists showed that oxidative stress is the common trigger that ultimately leads to lung failure.

To elucidate the entire pathway, Yumiko Imai of IMBA developed several mouse models. She was now able to show that a molecule called TLR4 (Toll-like receptor 4) is responsible for initiating the critical signalling pathway. TLR4 is displayed at the surface of certain lung cells called macrophages, important players of the body’s immune system. Once activated, TLR4 initiates an entire chain reaction which ends with the fatal failure of the lungs. Surprisingly, mice challenged with inactivated H5N1 avian influenza virus also dveloped the full reaction. On the other hand, mutant mice in which the function of TLR4 was genetically impaired were protected from lung failure in repsonse to the inactivated virus.

Based on these findings, the researchers can now outline a common molecular disease pathway: Microbial or chemical lung pathogens trigger the oxidative stress machinery. Oxidation products are intrepreted as danger-signals by the receptor TLR4. Subsequently, the body’s innate immune system is activated. This defense machinery in turn leads to a chain of reactions with severe and often fatal lung damage as a consequence.

For Yumiko Imai, a Postdoc in Josef Penninger’s team and pediatrician by training, these results are highly satisfying. Her motivation to study ARDS is based on personal experience in over 10 years at a pediatric intensive care unit. „I have seen so many children die from acute lung failure and felt utterly helpless“, Imai says. „ Since we found a common injury pathway, our hopes are high that we may be able to develop a new and innovative strategy for tackling severe lung infections.“

Dr. Heidemarie Hurtl | EurekAlert!
Further information:
http:// www.imba.oeaw.ac.at

Further reports about: ARDS Imai TLR4 acute common failure flu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>