Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies against bird flu

21.04.2008
Austrian scientists identify the common mechanism underlying acute respiratory disease syndrome ARDS

The Spanish flu outbreak of 1918 killed between 30 and 50 million people. In the infected patients, the ultimate cause of death was acute respiratory distress syndrome (ARDS). This fatal condition is a massive reaction of the body during which the lung becomes severely damaged. ARDS can be induced by various bacterial and viral infections, but also by chemical agents. These could be toxic gases that are inhaled or gastric acid when aspirated. Once ARDS has developed, survival rates drop dramatically. Among patients infected with H5N1 bird flu, about 50 percent die of ARDS.

An international team of scientists has been addressing the underlying disease mechanisms for the past five years. The team involved researchers from leading institutions in Vienna, Stockholm, Cologne, Beijing, Hongkong, and Toronto as well as the US-army at Fort Detrick. The international effort was coordinated by Josef Penninger and Yumiko Imai of the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences.

A first breakthrough came in 2005 when IMBA-scientists identified ACE2 as the essential receptor for SARS virus infections and showed that ACE2 can protect from acute lung failure in disease models (Imai et al. Nature 2005; Kuba et al. Nature Medicine 2005). Based on these data, ACE2 is now under therapeutic development.

... more about:
»ARDS »Imai »TLR4 »acute »common »failure »flu

In a paper published by Cell this week, the authors describe an essential key injury pathway that is operational in multiple lung injuries and directly links oxidative stress to innate immunity. They also report for the first time a common molecular disease pathway explaining how diverse non-infectious and infectious agents such as anthrax, lung plague, SARS, and H5N1 avian influenza may cause severe and often lethal lung failure with similar pathologies.

To identify these pathways, the researchers studied numerous tissue samples from deceased humans and animals. Victims of bird flu and SARS were examined in Hongkong, and the US-army provided samples from animals infected with Anthrax and lung plague. Common to all ARDS samples was the massive amount of oxidation products found within the cells. Based on these findings, the scientists showed that oxidative stress is the common trigger that ultimately leads to lung failure.

To elucidate the entire pathway, Yumiko Imai of IMBA developed several mouse models. She was now able to show that a molecule called TLR4 (Toll-like receptor 4) is responsible for initiating the critical signalling pathway. TLR4 is displayed at the surface of certain lung cells called macrophages, important players of the body’s immune system. Once activated, TLR4 initiates an entire chain reaction which ends with the fatal failure of the lungs. Surprisingly, mice challenged with inactivated H5N1 avian influenza virus also dveloped the full reaction. On the other hand, mutant mice in which the function of TLR4 was genetically impaired were protected from lung failure in repsonse to the inactivated virus.

Based on these findings, the researchers can now outline a common molecular disease pathway: Microbial or chemical lung pathogens trigger the oxidative stress machinery. Oxidation products are intrepreted as danger-signals by the receptor TLR4. Subsequently, the body’s innate immune system is activated. This defense machinery in turn leads to a chain of reactions with severe and often fatal lung damage as a consequence.

For Yumiko Imai, a Postdoc in Josef Penninger’s team and pediatrician by training, these results are highly satisfying. Her motivation to study ARDS is based on personal experience in over 10 years at a pediatric intensive care unit. „I have seen so many children die from acute lung failure and felt utterly helpless“, Imai says. „ Since we found a common injury pathway, our hopes are high that we may be able to develop a new and innovative strategy for tackling severe lung infections.“

Dr. Heidemarie Hurtl | EurekAlert!
Further information:
http:// www.imba.oeaw.ac.at

Further reports about: ARDS Imai TLR4 acute common failure flu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>