Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charting the epigenome

21.04.2008
Salk researchers zoom in on genome-wide DNA methylation and transcriptomes at single base resolution

Until recently, the chemical marks littering the DNA inside our cells like trees dotting a landscape could only be studied one gene at a time. But new high-throughput DNA sequencing technology has enabled researchers at the Salk Institute for Biological Studies to map the precise position of these individual DNA modifications throughout the genome of the plant Arabidopsis thaliana, and chart its effect on the activity of any of Arabidopsis’ roughly 26,000 genes.

“For a long time the prevailing view held that individual modifications are not critical,” says Joseph Ecker, Ph.D., a professor in the Plant Biology laboratory and director of the Salk Institute Genomic Analysis Laboratory. “The genomes of higher eukaryotes are peppered with modifications but unless you can take a detailed look at a large scale there is no way of knowing whether a particular mark is critical or not.”

The Salk study, which appears today in the online issue of Cell, paints a detailed picture of a dynamic and ever-changing, yet highly controlled, epigenome, the layer of genetic control beyond the regulation inherent in the sequence of the genes themselves.

Being able to study the epigenome in great detail and in its entirety will provide researchers with a better understanding of plant productivity and stress resistance, the dynamics of the human genome, stem cells’ capacity to self-renew and how epigenetic factors contribute to the development of tumors and disease.

Discoveries in recent years made it increasingly clear that there is far more to genetics than the sequence of building blocks that make up our genes. Adding molecules such as methyl groups to the backbone of DNA without altering the letters of the DNA alphabet can change how genes interact with the cell’s transcribing machinery and hand cells an additional tool to fine-tune gene expression.

“The goal of our study was to integrate multiple levels of epigenetic information since we still have a very poor understanding of the genome-wide regulation of methylation and its effect on the transcriptome,” explains postdoctoral researcher and co-first author Ryan Lister, Ph.D.

The transcriptome encompasses all RNA copies or transcripts made from DNA. The bulk of transcripts consists of messenger RNAs, or mRNAs, that serve as templates for the manufacture of proteins but also includes regulatory small RNAs, or smRNAs. The latter wield their power over gene expression by literally cutting short the lives of mRNAs or tagging specific sequences in the genome for methylation.

But before Lister could start to unravel the multiple layers of epigenetic regulation that control gene expression, he had to pioneer new technologies that allowed him to look at genome-wide methylation at single-base resolution and to sequence the complete transcriptome within a reasonable timeframe.

Collaborating scientists at the ARC Centre of Excellence in Plant Energy Biology at the University of Western Australia in Perth developed a powerful, web-based genome browser, which played a crucial role in unlocking the information hidden in the massive datasets.

Cells employ a whole army of enzymes that add methyl groups at specific sites, maintain established patterns or remove undesirable methyl groups. When Lister and his colleagues compared normal cells with cells lacking different combination of enzymes they discovered that cells put a lot of effort in keeping certain areas of the genome methylation-free.

On the flipside, the Salk researchers found that when they knocked out a whole class of methylases, a different type of methylase would step into the breach for the missing ones. This finding is relevant for a new class of cancer drugs that work by changing the methylation pattern in tumor cells.

“You might succeed in removing one type of methylation but end up with increasing a different type,” says Ecker. “But very soon we will be able to look and see what kind of compensatory changes are happening and avoid unintended consequences.”

Previous studies had found that a subset of smRNAs could direct methylation enzymes to the region of genomic DNA to which they aligned. Overlaying genome-wide methylome and smRNA datasets confirmed increased methylation precisely within the stretch of DNA that matched the sequence of the smRNA. Conversely, heavily methylated smRNA loci tended to spawn more smRNAs.

“We looked at a plant genome but our method can be applied to any system, including humans,” says Lister. Although the human genome is about 20 times bigger than the genome of Arabidopsis – plant biologists’ favorite model system not least because of its compact genome – Ecker predicts that within a year or so, sequencing technology will have advanced far enough to put the 3 billion base pairs of the human genome and their methyl buddies within reach.

“This really is just the beginning of unmasking the role of these powerful epigenetic regulatory mechanisms in eukaryotes,” says Ecker.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: DNA Genome Lister RNA epigenetic epigenome genome-wide methyl methylation smRNA transcriptome

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>