Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mature B cells reprogrammed to stem-cell-like state

21.04.2008
Fully differentiated cells, can be reprogrammed to induced pluripotent stem cells

Fully mature, differentiated B cells can be reprogrammed to an embryonic-stem-cell-like state, without the use of an egg according to a study published in the April 18 issue of Cell.

In previous research, induced pluripotent stem (IPS) cells have been created from fibroblasts, a specific type of skin cells that may differentiate into other types of skin cells. Because there is no way to tell if the fibroblasts were fully differentiated, the cells used in earlier experiments may have been less differentiated and therefore easier to convert to the embryonic-stem-cell-like state of IPS cells.

B cells are immune cells that can bind to specific antigens, such as proteins from bacteria, viruses or microorganisms. Unlike fibroblasts, mature B cells have a specific part of their DNA cut out as a final maturation step. “Once that piece of DNA is cut out, it can’t come back,” says Jacob Hanna, first author on the paper and a postdoctoral fellow in Whitehead Member Rudolf Jaenisch’s lab. “Checking the genome give us a way to make sure the resulting IPS cells were not from immature cells.”

Hanna and his colleagues began the experiment by generating IPS cells from immature B cells. Similar to the process used to create IPS cells from fibroblast cells, Hanna successfully reprogrammed the immature B cells into IPS cells by using retroviruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells’ DNA.

However, an additional factor, CCAAT/enhancer-binding-protein-á (C/EBPá), was needed to nudge mature B cells to be reprogrammed as IPS cells.

Like IPS cells from earlier fibroblast studies, the IPS cells from both the mature and immature B cells could be used to create mice. The mice grown from the reprogrammed mature B cells were missing the same part of their DNA as the mature B cells, demonstrating that Hanna and his colleagues had successfully reprogrammed fully differentiated cells.

In addition to demonstrating the power of reprogramming, this work offers the promise of powerful new mouse models for autoimmune diseases such as multiple sclerosis and type 1 diabetes, in which the body attacks certain types of its own cells. For example, mature B or T cells specific for nerve cells called glia could be reprogrammed to IPS cells and then used to create mice with an entire immune system that is primed to only attack the glia cells, thereby creating a mouse model for studying multiple sclerosis.

Eventually, researchers will be able to study diseases by following a similar process with human cells, predicts Jaenisch, who is also a professor of biology at Massachusetts Institute of Technology. “In principle, this will allow you to transfer a complex genetic human disease into a Petri dish, and study it,” he says. “That could be the first step to analyze the disease and to define a therapy.”

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: B cells DNA Fibroblast IPS differentiated immature reprogrammed

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>