Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Gel

18.04.2008
Hybrid material made from polymers and proteins fluoresces and respnods to pH value and temperature

Researchers at the University of California, Berkeley (USA) have now developed a new strategy for the formation of hybrid materials from synthetic polymers and proteins. They have thus been able to fuse the specific biological functions of proteins with the advantageous bulk and processing properties of plastics. Polymer-protein hybrid materials may be of use in the manufacture of sensors, nanomachine parts, or drug-delivery systems.

As Aaron P. Esser-Kahn and Matthew B. Francis report in the journal Angewandte Chemie, they have successfully synthesized a green-fluorescing biodegradable gel that responds to changes in pH value and temperature.

Previous processes for the production of hybrid materials depended on very specific coupling techniques that could not be used for some protein side-chains. In contrast, the new method developed by the Berkeley researchers is broadly applicable because in principle it is suitable for any protein. The coupling occurs at both ends of the protein chain—and these are the same for all proteins: one amino acid group and one carboxylic acid group.

... more about:
»Chain »Gel »HYBRID »Polymer »fluoresces

Initially, two parallel but mutually independent (orthogonal) reactions are used to activate the two ends of the chain. These are then attached to special chemical “anchor points” on the polymer. The proteins thus cross-link the individual polymer chains into a three-dimensional network, forming what is known as a hydrogel. A hydrogel is a solid, gelatinous mass consisting of water incorporated in a polymer network. A well-known example of a hydrogel is the soft contact lens.

Francis and Esser-Kahn chose to use a protein that fluoresces green to cross-link their polymer chains. Because the protein maintains its normal folding pattern even after attachment to the polymer, the fluorescence is also maintained: The entire gel fluoresces green.

This hybrid material has a special trait: the cross-linking of the polymer chains is achieved exclusively by means of the proteins. Because proteins can be attacked by proteases, enzymes that disintegrate proteins, these gels are biodegradable. The green fluorescence of the protein is pH-dependent. The gel correspondingly also reacts to changes in pH. It only fluoresces in the basic range; in a lightly acidic medium, the gel no longer fluoresces. Raising the temperature also elicits a response from the gel. The protein denatures at about 70 °C, which quenches the fluorescence and causes the gel to shrink.

Author: Matthew B. Francis, University of California, Berkeley (USA), http://chem.berkeley.edu/people/faculty/francis/francis.html

Title: Protein-Cross-Linked Polymeric Materials through Site-Selective Bioconjugation

Angewandte Chemie International Edition 2008, 47, No. 20, 3751–3754, doi: 10.1002/anie.200705564

Matthew B. Francis | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chem.berkeley.edu/people/faculty/francis/francis.html

Further reports about: Chain Gel HYBRID Polymer fluoresces

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>