Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bloodless Worm Sheds Light on Human Blood, Iron Deficiency

Using a lowly bloodless worm, University of Maryland researchers have discovered an important clue to how iron carried in human blood is absorbed and transported into the body. The finding could lead to developing new ways to reduce iron deficiency, the world's number one nutritional disorder.

With C. elegans , a common microscopic worm that lives in dirt, Iqbal Hamza, assistant professor of animal and avian sciences, and his team identified previously unknown proteins that are key to transporting heme, the molecule that creates hemoglobin in blood and carries iron. It is a critical step in understanding how our bodies process iron. Their findings are published in the April 16 issue of Nature online.

"The structure of hemoglobin has been crystallized over and over," says Hamza, "but no one knows how the heme gets into the globin, or how humans absorb iron, which is mostly in the form of heme.

"To understand the underlying issues of nutritional and genetic causes of iron deficiency, we are looking at the molecules and mechanisms involved in heme absorption. Once you understand transport of heme, you can more effectively deliver it to better absorb iron in the human intestine."

... more about:
»Hamza »Iron »blood »deficiency »elegans »heme

Heme and Blood

Heme is a critical molecule for health in all eukaryotes, organisms whose cells are organized into complex structures enclosed in membranes. Species of eukaryotes range from humans to baker's yeast. Heme makes blood red and binds to oxygen and other gases we need to survive.

Heme is created in the mitochondria, then moves through pathways that connect other cells, where it is synthesized to form blood. Heme on its own, however, is toxic. "We wanted to find out how heme gets carried between and within cells," said Hamza.

A Bloodless Worm

Eight steps are required to generate heme, making it a difficult process to control in the study of heme transport pathways, as Hamza learned when he first studied the question in bacteria and mice.

So Hamza did the non-intuitive thing. He chose a test subject that doesn't make heme, but needs it to survive, that doesn't even have blood, but shares a number of genes with humans - the C. elegans roundworm, a simple nematode.

"We tried to understand how blood is formed in an animal that doesn't have blood, that doesn't turn red, but has globin," Hamza said.

C. elegans gets heme by eating bacteria in the soil where it lives. "C. elegans consumes heme and transports it into the intestine. So now you have a master valve to control how much heme the animal sees and digests via its food," Hamza explains.

C. elegans has several other benefits for studying heme transport. Hamza's team could control the amount of heme the worms were eating. With only one valve controlling the heme transport, the scientists knew exactly where heme was entering the worm's intestine, where, as in humans, it is absorbed.

And C. elegans is transparent, so that under the microscope researchers could see the movement of the heme ingested by the worm.

Genes and Iron Deficiency

The study revealed several findings that could lead to new treatment for iron deficiency. One was the discovery that genes are involved in heme transport. Hamza's group found that HRG-1 genes, which are common to humans and C. elegans , were important regulators of heme transport in the worm.

To test their findings in an animal that makes blood, Hamza's team removed the HRG-1 gene in zebrafish. The fish developed bone and brain defects, much like birth defects. The gene removal also resulted in a severe form of anemia usually caused by iron deficiencies.

When they substituted the zebrafish gene with the worm HRG-1 gene, the mutant fish returned to normal, indicating that the fish and worm genes are interchangeable, irrespective of the animal's ability to make blood.

They also found that too little or too much heme can kill C. elegans , a result that could help researchers find ways to treat people who suffer from iron deficiency caused by parasitic worms.

"More than two billion people are infected with parasites," says Hamza. "Hookworms eat a huge amount of hemoglobin and heme in their hosts. If we can simultaneously understand heme transport pathways in humans and worms, we can exploit heme transport genes to deliver drugs disguised as heme to selectively kill parasites but not harm the host."

Other researchers on the study were Abbhirami Rajagopal, Anita U. Rao, Caitlin Hall, Suji Uhm, University of Maryland ; Julio Amigo, Barry H. Paw, Brigham and Women's Hospital, Boston ; Meng Tian, Mark D. Fleming, Children's Hospital, Boston ; Sanjeev K. Upadhyay, M.K. Mathew, Tata Institute of Fundamental Research, Bangalore , India ; Michael Krause, National Institute of Diabetes and Digestive and Kidney Diseases, NIH.

The research was funded by grants from the National Institutes of Health, the March of Dimes Birth Defects Foundation, Council for Scientific and Industrial Research and Kanwal Rekhi Fellowships, and the Howard Hughes Medical Institute Undergraduate Science Education Program.

Ellen Ternes | EurekAlert!
Further information:

Further reports about: Hamza Iron blood deficiency elegans heme

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>