Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bloodless Worm Sheds Light on Human Blood, Iron Deficiency

18.04.2008
Using a lowly bloodless worm, University of Maryland researchers have discovered an important clue to how iron carried in human blood is absorbed and transported into the body. The finding could lead to developing new ways to reduce iron deficiency, the world's number one nutritional disorder.

With C. elegans , a common microscopic worm that lives in dirt, Iqbal Hamza, assistant professor of animal and avian sciences, and his team identified previously unknown proteins that are key to transporting heme, the molecule that creates hemoglobin in blood and carries iron. It is a critical step in understanding how our bodies process iron. Their findings are published in the April 16 issue of Nature online.

"The structure of hemoglobin has been crystallized over and over," says Hamza, "but no one knows how the heme gets into the globin, or how humans absorb iron, which is mostly in the form of heme.

"To understand the underlying issues of nutritional and genetic causes of iron deficiency, we are looking at the molecules and mechanisms involved in heme absorption. Once you understand transport of heme, you can more effectively deliver it to better absorb iron in the human intestine."

... more about:
»Hamza »Iron »blood »deficiency »elegans »heme

Heme and Blood

Heme is a critical molecule for health in all eukaryotes, organisms whose cells are organized into complex structures enclosed in membranes. Species of eukaryotes range from humans to baker's yeast. Heme makes blood red and binds to oxygen and other gases we need to survive.

Heme is created in the mitochondria, then moves through pathways that connect other cells, where it is synthesized to form blood. Heme on its own, however, is toxic. "We wanted to find out how heme gets carried between and within cells," said Hamza.

A Bloodless Worm

Eight steps are required to generate heme, making it a difficult process to control in the study of heme transport pathways, as Hamza learned when he first studied the question in bacteria and mice.

So Hamza did the non-intuitive thing. He chose a test subject that doesn't make heme, but needs it to survive, that doesn't even have blood, but shares a number of genes with humans - the C. elegans roundworm, a simple nematode.

"We tried to understand how blood is formed in an animal that doesn't have blood, that doesn't turn red, but has globin," Hamza said.

C. elegans gets heme by eating bacteria in the soil where it lives. "C. elegans consumes heme and transports it into the intestine. So now you have a master valve to control how much heme the animal sees and digests via its food," Hamza explains.

C. elegans has several other benefits for studying heme transport. Hamza's team could control the amount of heme the worms were eating. With only one valve controlling the heme transport, the scientists knew exactly where heme was entering the worm's intestine, where, as in humans, it is absorbed.

And C. elegans is transparent, so that under the microscope researchers could see the movement of the heme ingested by the worm.

Genes and Iron Deficiency

The study revealed several findings that could lead to new treatment for iron deficiency. One was the discovery that genes are involved in heme transport. Hamza's group found that HRG-1 genes, which are common to humans and C. elegans , were important regulators of heme transport in the worm.

To test their findings in an animal that makes blood, Hamza's team removed the HRG-1 gene in zebrafish. The fish developed bone and brain defects, much like birth defects. The gene removal also resulted in a severe form of anemia usually caused by iron deficiencies.

When they substituted the zebrafish gene with the worm HRG-1 gene, the mutant fish returned to normal, indicating that the fish and worm genes are interchangeable, irrespective of the animal's ability to make blood.

They also found that too little or too much heme can kill C. elegans , a result that could help researchers find ways to treat people who suffer from iron deficiency caused by parasitic worms.

"More than two billion people are infected with parasites," says Hamza. "Hookworms eat a huge amount of hemoglobin and heme in their hosts. If we can simultaneously understand heme transport pathways in humans and worms, we can exploit heme transport genes to deliver drugs disguised as heme to selectively kill parasites but not harm the host."

Other researchers on the study were Abbhirami Rajagopal, Anita U. Rao, Caitlin Hall, Suji Uhm, University of Maryland ; Julio Amigo, Barry H. Paw, Brigham and Women's Hospital, Boston ; Meng Tian, Mark D. Fleming, Children's Hospital, Boston ; Sanjeev K. Upadhyay, M.K. Mathew, Tata Institute of Fundamental Research, Bangalore , India ; Michael Krause, National Institute of Diabetes and Digestive and Kidney Diseases, NIH.

The research was funded by grants from the National Institutes of Health, the March of Dimes Birth Defects Foundation, Council for Scientific and Industrial Research and Kanwal Rekhi Fellowships, and the Howard Hughes Medical Institute Undergraduate Science Education Program.

Ellen Ternes | EurekAlert!
Further information:
http://www.umd.edu

Further reports about: Hamza Iron blood deficiency elegans heme

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>