Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies show how salmonella escapes immune defenses

18.04.2008
Salmonella are wily and obnoxious bacterial invaders--escape artists capable of evading multiple immune responses and causing a harsh and debilitating intestinal infection.

Researchers have come closer to understanding how these bacteria manage to thwart two major categories of immune defenses at once and set up shop in a host organism. New results are reported in the April 2008 issue of the journal Cell Host & Microbe.

The Emory University research team used a transgenic fruit fly (drosophila) model to test a group of "effector proteins," also known as "virulence factors," secreted by invading organisms to usurp the host immune response for their own benefit.

They found that one of these proteins, named AvrA, not only shuts down the key immune signaling pathways JNK and NF-kB, but also turns off the fail safe system organisms have evolved to respond to irreversible threats. This ultimate immune defense, called apoptosis, eliminates invaders along with the infected cells through a system of programmed cell death.

... more about:
»AvrA »Drosophila »Infection »Salmonella »Signaling »immune

In previous research, the scientists had showed that AvrA could suppress some aspects of immune system signaling in cell culture, but they wanted to study the protein in a whole animal system.

"Bacterial proteins are notoriously difficult to study," says Andrew Neish, MD, Emory professor of pathology and laboratory medicine and the study's lead scientist. "Using the drosophila system allowed us to express bacterial proteins in a controlled fashion. We were able to study salmonella infection and the associated proteins and signaling mechanisms in a whole animal, which gave us information we could not have gained from a cell culture dish."

To evaluate the effects of AvrA in natural salmonella infection in mammals, the scientists used a mouse model of salmonella infection and found that AvrA suppressed the same immune signaling pathways and apoptotic reaction as in the drosophila model. A mutant form of the salmonella lacking the AvrA protein caused an enhanced inflammatory immune response and markedly more cell death in the mouse intestine.

"Using drosophila genetics, we found a biochemical crossroad required for both immune and apoptotic pathways," says Neish. "The AvrA protein is able to key in on the exact site of the biochemical network and allow it to suppress both the inflammatory response and the apoptotic immune response at the same time. We suspect that other pathogens may target the same biochemical network to avoid elimination. These immune pathways in drosophila have been preserved across evolution and are remarkably similar to human immune pathways. This is such a powerful research system that any bacterial or viral genes would be amenable to study through this approach."

Sarah Goodwin | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: AvrA Drosophila Infection Salmonella Signaling immune

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>