Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first discovery could help treat life-threatening tumors

18.04.2008
WA researchers investigating how blood vessel growth keeps cancers alive have made a world-first discovery that could boost the chances of successfully treating life-threatening tumours.

Western Australian Institute for Medical Research (WAIMR) Associate Professor Ruth Ganss and her team have found that a gene called RGS5 can reverse angiogenesis – the growth of blood vessels inside the tumour.

The discovery is published in the most recent edition of Nature, one of the world’s most prestigious scientific journals.

“It’s the uncontrolled growth of blood vessels and the formation of abnormal blood vessels inside tumours that ‘feed’ them, allowing them to grow and stopping the immune system from wiping out the tumour,” said Associate Professor Ganss.

“What we’ve shown is that RGS5 is a master gene in angiogenesis and that when it is removed, angiogenesis reverses and the blood vessels in tumours appear more normal.

“Importantly, this normalisation changes the tumour environment in a way that improves immune cell entry, meaning tumours can be destroyed and improving survival rates in laboratory tests.”

Reversing abnormal vessel growth represents a fresh approach to tackling angiogenesis, with most current research focusing on how to block or kill tumour-feeding blood vessels.

“We’ve long-suspected this research would deliver advances in knowledge about what impacts tumour growth and this publication recognises the innovation and importance of our work,” said Associate Professor Ganss.

“By understanding what is actually going on in the tumour itself, the ultimate hope is that we’ll be able to work on making current therapeutic approaches even more successful and reducing side effects of them.”

Associate Professor Ganss’ breakthrough comes after joining WAIMR from Heidelberg where she worked at the German Cancer Research Center. Last month, The Cancer Council Western Australia granted Associate Professor Ganss a Cancer Council Research Fellowship for continued work into tumour angiogenesis.

The majority of the discovery was funded by the National Health and Medical Research Council and part of the work was achieved using facilities at The University of WA based Centre for Microscopy, Characterisation and Analysis.

Earlier this month, a second paper by Associate Professor Ganss’ and her team was published in The Journal of Clinical Investigation which describes how tumours can be attacked by the immune system with fewer side-effects.

“This discovery involves targeting tumours with inflammatory substances that change the environment, so immune cells can attack the tumour through blood vessels more effectively and lessen the amount of toxins going elsewhere in the body,” Associate Professor Ganss said.

WAIMR Director Professor Peter Klinken praised Associate Professor Ganss’ team saying their work was serving to further put WA on the scientific world map.

“This breakthrough is one of the most significant discoveries to come out of WAIMR. The potential for this new knowledge to positively impact the lives of cancer patients in the future is very exciting,” he said.

“The fact that this breakthrough has come during our 10-year anniversary celebrations is just fantastic.”

Sarah Hayward | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

Further reports about: Angiogenesis Associate Discovery Ganss blood vessel vessel

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>