Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reduces cocaine use in rats

18.04.2008
Flooding brain with 'pleasure chemical' receptors works on cocaine, as on alcohol

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that increasing the brain level of receptors for dopamine, a pleasure-related chemical, can reduce use of cocaine by 75 percent in rats trained to self-administer it.

Earlier research by this team had similar findings for alcohol intake. Treatments that increase levels of these chemicals - dopamine D2 receptors -- may prove useful in treating addiction, according to the authors. The study will be published online April 16 and will appear in the July 2008 issue of Synapse.

"By increasing dopamine D2 receptor levels, we saw a dramatic drop in these rats' interest in cocaine," said lead author Panayotis (Peter) Thanos, a neuroscientist with Brookhaven Lab and the National Institute on Alcohol Abuse and Alcoholism (NIAAA) Laboratory of Neuroimaging. "This provides new evidence that low levels of dopamine D2 receptors may play an important role in not just alcoholism but in cocaine abuse as well. It also shows a potential direction for addiction therapies."

The D2 receptor receives signals in the brain triggered by dopamine, a neurotransmitter needed to experience feelings of pleasure and reward. Without receptors for dopamine, these signals get "jammed" and the pleasure response is blunted. Previous studies at Brookhaven Lab have shown that chronic abuse of alcohol and other addictive drugs increases the brain's production of dopamine. Over time, however, these drugs deplete the brain's D2 receptors and rewire the brain so that normal pleasurable activities that stimulate these pathways no longer do - leaving the addictive drug as the only way to achieve this stimulation.

The current study suggests that cocaine-dependent individuals may have their need for cocaine decreased if their D2 levels are boosted. Thanos' lab previously demonstrated dramatic reductions in alcohol use in alcohol-preferring rats infused with dopamine D2 receptors (see: http://www.bnl.gov/discover/Winter_06/alcohol_1.asp). Thanos hypothesized that the same would hold true with other addictive drugs.

The researchers tested this hypothesis by injecting a virus that had been rendered harmless and altered to carry the D2 receptor gene directly into the brains of experimental rats that were trained to self-administer cocaine -- the same technique used in the earlier alcohol study. The virus acted as a mechanism to deliver the gene to the nucleus accumbens, the brain's pleasure center, enabling the cells in this brain region to make receptor proteins themselves.

The scientists examined how the injected genes affected the rats' cocaine-using behavior after they had been taking cocaine for two weeks. After receiving the D2 receptor treatment, the rats showed a 75 percent decrease in self-administration of the drug. This effect lasted six days before their cocaine self-administration returned to previous levels.

"This adds another piece to the puzzle of the complex role of dopamine D2 receptors in addiction," said Thanos.

This research was funded by The National Institute on Alcohol Abuse and Alcoholism Intramural Research Program at the National Institutes of Health and by the Office of Biological and Environmental Research within the U.S. Department of Energy's (DOE) Office of Science. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) are a direct outgrowth of DOE's support of basic physics and chemistry research.

All research involving laboratory animals at Brookhaven National Laboratory is conducted under the jurisdiction of the Lab's Institutional Animal Care and Use Committee in compliance with the Public Heath Service (PHS) Policy on Humane Care and Use of Laboratory Animals, the U.S. Department of Agriculture's Animal Welfare Act, and the National Academy of Sciences' Guide for the Care and Use of Laboratory Animals. This research has enhanced understanding of a wide array of human medical conditions including cancer, drug addiction, Alzheimer's and Parkinson's diseases, and normal aging and has led to the development of several promising treatment strategies.

For further information on Peter Thanos' lab and research visit http://www.bnl.gov/thanoslab. For more on Brookhaven National Laboratory's addiction research go to http://www.bnl.gov/CTN/addiction.asp.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/newsroom

Further reports about: Brookhaven addiction cocaine dopamine pleasure receptor

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>