Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST, Army researchers pave the way for anthrax spore standards

18.04.2008
Researchers from the National Institute of Standards and Technology (NIST) and the U.S. Army Dugway (Utah) Proving Ground have developed reliable methods based on DNA analysis to assess the concentration and viability of anthrax spores after prolonged storage. The techniques and data are essential steps in developing a reliable reference standard for anthrax detection and decontamination.

Bacillus anthracis, the bacterium that causes anthrax, has been a centuries-old threat to human health. In 2001, it was used as a letter-borne terrorist weapon that killed five Americans. Since the tenacious bacterium can survive for decades in a stable spore state, the Department of Homeland Security (DHS) has been working with NIST to develop anthrax spore reference materials. These materials could be used as controls in laboratory studies of anthrax, to calibrate spore detection equipment and to assess the efficiency of spore decontamination methods.

Because sample stability is a key requirement for reference materials, NIST and Army researchers recently compared different methods for measuring the concentration, biological activity and stability of laboratory-grade Bacillus anthracis spores under different storage conditions. Bacillus anthracis (Sterne), a harmless vaccine strain, was used in the study. The results of the research will be published in an upcoming issue of the Journal of Applied Microbiology.*

Working with samples that had been stored up to 2 1/2 years, the research team used two classic microbiological techniques to quantify the Bacillus anthracis concentrations: counting spores under a microscope and counting the bacterial colonies that grow after the spores are spread on a nutrient surface and germinate. The latter yields valuable data on the biological activity of the samples; however, only viable cells are counted and counts may be underestimated if cell clumping occurs. A better approach is to measure the amount of genetic material present in the sample. This method not only measures the DNA extracted from viable anthrax spores but also DNA in solution from damaged spores, cell debris and spore fragments—giving a truer measure of the source of DNA in the samples. Additionally, many of the new instruments available for rapid detection of anthrax spores are based on DNA markers, so it is important to accurately measure the DNA content of the reference samples that will be used to test and calibrate these devices.

... more about:
»Anthrax »Army »BACILLUS »DNA »Spore »anthracis »concentration

Traditional methods for extracting DNA from Bacillus anthracis spores are too harsh to produce material suitable for reliable measurements. To overcome this obstacle, the team developed an extraction technique that used chemicals and enzymes to disrupt intact spores into releasing their DNA in a relatively pure state.

The NIST-Army study showed that laboratory-grade Bacillus anthracis spores in suspension maintained their viability and did not clump when stored for up to 900 days. The classical method for counting spores yielded comparable results to the DNA measurements used to determine spore concentrations. The results demonstrate that research quality spores can be stored for long periods of time and still maintain their important properties, proving that uniform and consistent reference materials are possible.

* J.L. Almeida, B. Harper and K.D. Cole. Bacillus anthracis spore suspensions: determination of stability and comparison of enumeration techniques. Journal of Applied Microbiology, 2008.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Anthrax Army BACILLUS DNA Spore anthracis concentration

More articles from Life Sciences:

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>