Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST, Army researchers pave the way for anthrax spore standards

18.04.2008
Researchers from the National Institute of Standards and Technology (NIST) and the U.S. Army Dugway (Utah) Proving Ground have developed reliable methods based on DNA analysis to assess the concentration and viability of anthrax spores after prolonged storage. The techniques and data are essential steps in developing a reliable reference standard for anthrax detection and decontamination.

Bacillus anthracis, the bacterium that causes anthrax, has been a centuries-old threat to human health. In 2001, it was used as a letter-borne terrorist weapon that killed five Americans. Since the tenacious bacterium can survive for decades in a stable spore state, the Department of Homeland Security (DHS) has been working with NIST to develop anthrax spore reference materials. These materials could be used as controls in laboratory studies of anthrax, to calibrate spore detection equipment and to assess the efficiency of spore decontamination methods.

Because sample stability is a key requirement for reference materials, NIST and Army researchers recently compared different methods for measuring the concentration, biological activity and stability of laboratory-grade Bacillus anthracis spores under different storage conditions. Bacillus anthracis (Sterne), a harmless vaccine strain, was used in the study. The results of the research will be published in an upcoming issue of the Journal of Applied Microbiology.*

Working with samples that had been stored up to 2 1/2 years, the research team used two classic microbiological techniques to quantify the Bacillus anthracis concentrations: counting spores under a microscope and counting the bacterial colonies that grow after the spores are spread on a nutrient surface and germinate. The latter yields valuable data on the biological activity of the samples; however, only viable cells are counted and counts may be underestimated if cell clumping occurs. A better approach is to measure the amount of genetic material present in the sample. This method not only measures the DNA extracted from viable anthrax spores but also DNA in solution from damaged spores, cell debris and spore fragments—giving a truer measure of the source of DNA in the samples. Additionally, many of the new instruments available for rapid detection of anthrax spores are based on DNA markers, so it is important to accurately measure the DNA content of the reference samples that will be used to test and calibrate these devices.

... more about:
»Anthrax »Army »BACILLUS »DNA »Spore »anthracis »concentration

Traditional methods for extracting DNA from Bacillus anthracis spores are too harsh to produce material suitable for reliable measurements. To overcome this obstacle, the team developed an extraction technique that used chemicals and enzymes to disrupt intact spores into releasing their DNA in a relatively pure state.

The NIST-Army study showed that laboratory-grade Bacillus anthracis spores in suspension maintained their viability and did not clump when stored for up to 900 days. The classical method for counting spores yielded comparable results to the DNA measurements used to determine spore concentrations. The results demonstrate that research quality spores can be stored for long periods of time and still maintain their important properties, proving that uniform and consistent reference materials are possible.

* J.L. Almeida, B. Harper and K.D. Cole. Bacillus anthracis spore suspensions: determination of stability and comparison of enumeration techniques. Journal of Applied Microbiology, 2008.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Anthrax Army BACILLUS DNA Spore anthracis concentration

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>