Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein simulation can be done three times as fast

24.06.2002


Protein movement can be simulated three times as fast than had been thought possible up to now. Researchers from Groningen achieved the gain in speed by leaving out the calculations concerning hydrogen atoms. Meanwhile research groups around the world are adapting their simulation programs.



Up until now researchers calculated all of the positions of atoms in a protein molecule after two femtoseconds. A femtosecond is one millionth of a billionth of a second. The research from Groningen reveals that steps of 7 femtoseconds are also good enough. With this the simulation is three times as fast. A number of research groups are already using the results from the Groningen study.

Steps of 7 femtseconds ignore the forces which occur between hydrogen atoms. The researchers have demonstrated that these forces are not relevant for the simulation. Indeed, taking into account how the forces were always described up until now, they are best left out of the calculations.


PhD student Anton Feenstra: "The forces around hydrogen atoms are so small that they cannot really be calculated according to the standard billiard ball description. However, up until now we did do this. If you really want to include hydrogen, although I have shown that does not really need to be done, you should describe it using quantum mechanics."

The researchers expect that the intervals will not become much greater than 7 femtoseconds. Even greater intervals result in unrealistic situations. For example, particles come so close together that it is no longer natural and during the next interval they are further apart than is actually possible.

Biologically interesting processes such as the folding of proteins, occur in a matter of milliseconds. For this the fastest Pentium has to calculate day and night for 200 years. Supercomputers can perform these calculations about 100 times faster. Researchers expect that supercomputers will be so fast in ten years time that they will be able to perform these calculations in one week.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>