Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein simulation can be done three times as fast

24.06.2002


Protein movement can be simulated three times as fast than had been thought possible up to now. Researchers from Groningen achieved the gain in speed by leaving out the calculations concerning hydrogen atoms. Meanwhile research groups around the world are adapting their simulation programs.



Up until now researchers calculated all of the positions of atoms in a protein molecule after two femtoseconds. A femtosecond is one millionth of a billionth of a second. The research from Groningen reveals that steps of 7 femtoseconds are also good enough. With this the simulation is three times as fast. A number of research groups are already using the results from the Groningen study.

Steps of 7 femtseconds ignore the forces which occur between hydrogen atoms. The researchers have demonstrated that these forces are not relevant for the simulation. Indeed, taking into account how the forces were always described up until now, they are best left out of the calculations.


PhD student Anton Feenstra: "The forces around hydrogen atoms are so small that they cannot really be calculated according to the standard billiard ball description. However, up until now we did do this. If you really want to include hydrogen, although I have shown that does not really need to be done, you should describe it using quantum mechanics."

The researchers expect that the intervals will not become much greater than 7 femtoseconds. Even greater intervals result in unrealistic situations. For example, particles come so close together that it is no longer natural and during the next interval they are further apart than is actually possible.

Biologically interesting processes such as the folding of proteins, occur in a matter of milliseconds. For this the fastest Pentium has to calculate day and night for 200 years. Supercomputers can perform these calculations about 100 times faster. Researchers expect that supercomputers will be so fast in ten years time that they will be able to perform these calculations in one week.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>