Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein simulation can be done three times as fast

24.06.2002


Protein movement can be simulated three times as fast than had been thought possible up to now. Researchers from Groningen achieved the gain in speed by leaving out the calculations concerning hydrogen atoms. Meanwhile research groups around the world are adapting their simulation programs.



Up until now researchers calculated all of the positions of atoms in a protein molecule after two femtoseconds. A femtosecond is one millionth of a billionth of a second. The research from Groningen reveals that steps of 7 femtoseconds are also good enough. With this the simulation is three times as fast. A number of research groups are already using the results from the Groningen study.

Steps of 7 femtseconds ignore the forces which occur between hydrogen atoms. The researchers have demonstrated that these forces are not relevant for the simulation. Indeed, taking into account how the forces were always described up until now, they are best left out of the calculations.


PhD student Anton Feenstra: "The forces around hydrogen atoms are so small that they cannot really be calculated according to the standard billiard ball description. However, up until now we did do this. If you really want to include hydrogen, although I have shown that does not really need to be done, you should describe it using quantum mechanics."

The researchers expect that the intervals will not become much greater than 7 femtoseconds. Even greater intervals result in unrealistic situations. For example, particles come so close together that it is no longer natural and during the next interval they are further apart than is actually possible.

Biologically interesting processes such as the folding of proteins, occur in a matter of milliseconds. For this the fastest Pentium has to calculate day and night for 200 years. Supercomputers can perform these calculations about 100 times faster. Researchers expect that supercomputers will be so fast in ten years time that they will be able to perform these calculations in one week.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>