Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein simulation can be done three times as fast

24.06.2002


Protein movement can be simulated three times as fast than had been thought possible up to now. Researchers from Groningen achieved the gain in speed by leaving out the calculations concerning hydrogen atoms. Meanwhile research groups around the world are adapting their simulation programs.



Up until now researchers calculated all of the positions of atoms in a protein molecule after two femtoseconds. A femtosecond is one millionth of a billionth of a second. The research from Groningen reveals that steps of 7 femtoseconds are also good enough. With this the simulation is three times as fast. A number of research groups are already using the results from the Groningen study.

Steps of 7 femtseconds ignore the forces which occur between hydrogen atoms. The researchers have demonstrated that these forces are not relevant for the simulation. Indeed, taking into account how the forces were always described up until now, they are best left out of the calculations.


PhD student Anton Feenstra: "The forces around hydrogen atoms are so small that they cannot really be calculated according to the standard billiard ball description. However, up until now we did do this. If you really want to include hydrogen, although I have shown that does not really need to be done, you should describe it using quantum mechanics."

The researchers expect that the intervals will not become much greater than 7 femtoseconds. Even greater intervals result in unrealistic situations. For example, particles come so close together that it is no longer natural and during the next interval they are further apart than is actually possible.

Biologically interesting processes such as the folding of proteins, occur in a matter of milliseconds. For this the fastest Pentium has to calculate day and night for 200 years. Supercomputers can perform these calculations about 100 times faster. Researchers expect that supercomputers will be so fast in ten years time that they will be able to perform these calculations in one week.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>