Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT research sheds light on cell division

17.04.2008
Work could impact study of miscarriages, birth defects
Proteins that control cell division play a far more nuanced role than researchers previously thought in the process that gives rise to reproductive cells, according to new findings by MIT biologists.

The work, reported in the April 18 issue of Cell, could help scientists understand why errors occcur so often during this process, known as meiosis. Meiotic mistakes are a leading cause of miscarriage and birth defects such as mental retardation.

Authors of the paper are Angelika Amon, MIT biology professor and Howard Hughes Medical Institute investigator, and biology graduate student Thomas Carlile.

Meiosis is a critical part of the reproductive cycle, producing reproductive cells with only one set of chromosomes (eggs and sperm in humans, spores in yeast, the organism the researchers studied).

Meiosis is more complex than the other type of cell division, mitosis, which occurs when a cell splits into two "daughter cells," each identical to the original.

Both meiosis and mitosis are controlled by proteins known as cyclin-dependent kinases (CDKs). In humans, there are 11 different types of CDKs, and in yeast, there are nine.

During mitosis, the CDKs are largely interchangeable. Until now, researchers had assumed that the same was true during meiosis.

This study shows that different CDKs have different roles during meiosis, which occurs in two stages, meiosis I and meiosis II. The researchers found that a protein called clb1-CDK stimulates meiosis I, and clb3-CDK promotes meiosis II.

"For the first time, we're beginning to understand that maybe in mitosis it doesn't matter (which clb-CDKs are present), but when you start doing complicated things, it starts to matter which type of CDK is active and how it's regulated," said Amon.

During meiosis, chromosomes line up along the cell's equator before being pulled into one of the resulting reproductive cells. Mistakes during that process lead to an extra or missing copy of one chromosome, which results in fatal defects or mental retardation, such as Down's Syndrome.

Amon's work could help provide a foundation for understanding why such errors occur so often. (It is estimated that 10 to 15 percent of human conceptions end in miscarriage, often because the fetus has the wrong number of chromosomes.)

"You have to understand the process in detail before you can go on and find out what's wrong with it," Amon said.

Part of the reason that no one has observed these different roles for CDKs before is that it is very difficult to get yeast cells to undergo meiosis in synchrony. Amon and Carlile, lead author of the paper, developed a technique to do just that, allowing them to see the novel behavior for the first time.

Eventually the researchers hope to discover whether meiosis in humans is controlled in similar ways.

The research was funded by the National Institutes of Health.
--By Anne Trafton, MIT News Office

Teresa Herbert | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Amon CDK Chromosome meiosis mitosis reproductive

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>