Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A potential sugar fix for tumors

Researchers at the Duke School of Medicine apparently have solved the riddle of why cancer cells like sugar so much, and it may be a mechanism that could lead to better cancer treatments.

Jonathan Coloff, a graduate student in Assistant Professor Jeffrey Rathmell’s laboratory in the Duke Department of Pharmacology and Cancer Biology, has found that the tumor cells use glucose sugar as a way to avoid programmed cell death.

They make use of a protein called Akt, which promotes glucose metabolism, which in turn regulates a family of proteins critical for cell survival, the researchers shared during an April 15 presentation at the American Association of Cancer Research Annual Meeting in San Diego.

In normal cells, growth factors regulate metabolism and cell survival. Removing these factors leads to loss of glucose uptake and metabolism and cell death. Cancer cells, however, maintain glucose metabolism and resist cell death, even when deprived of growth factors.

... more about:
»Glucose »metabolism »sugar

To study how Akt might affect these processes, Coloff and colleagues introduced a cancer-causing form of Akt called myrAkt, into cells that depend on growth factor to survive. The mutant form of Akt allowed cells to maintain glucose usage and survive even when no growth factors were present, allowing them to bypass a normal safeguard used by cells to prevent cancer development.

The death of normal cells after growth factors are removed is partly accomplished by two proteins called Mcl-1 and Puma. But the cancer-causing version of Akt prevents these two proteins from accomplishing their tasks, allowing the cell to survive when it shouldn’t.

Once glucose was withdrawn from the environment, however, Akt was no longer able to maintain regulation of the key targeted proteins Mcl-1 and Puma, and the cells died.

“Akt’s dependence on glucose to provide an anti-cell-death signal could be a sign of metabolic addiction to glucose in cancer cells, and could give us a new avenue for a metabolic treatment of cancer,” said Dr. Rathmell.

Mary Jane Gore | EurekAlert!
Further information:

Further reports about: Glucose metabolism sugar

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>