Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A potential sugar fix for tumors

17.04.2008
Researchers at the Duke School of Medicine apparently have solved the riddle of why cancer cells like sugar so much, and it may be a mechanism that could lead to better cancer treatments.

Jonathan Coloff, a graduate student in Assistant Professor Jeffrey Rathmell’s laboratory in the Duke Department of Pharmacology and Cancer Biology, has found that the tumor cells use glucose sugar as a way to avoid programmed cell death.

They make use of a protein called Akt, which promotes glucose metabolism, which in turn regulates a family of proteins critical for cell survival, the researchers shared during an April 15 presentation at the American Association of Cancer Research Annual Meeting in San Diego.

In normal cells, growth factors regulate metabolism and cell survival. Removing these factors leads to loss of glucose uptake and metabolism and cell death. Cancer cells, however, maintain glucose metabolism and resist cell death, even when deprived of growth factors.

... more about:
»Glucose »metabolism »sugar

To study how Akt might affect these processes, Coloff and colleagues introduced a cancer-causing form of Akt called myrAkt, into cells that depend on growth factor to survive. The mutant form of Akt allowed cells to maintain glucose usage and survive even when no growth factors were present, allowing them to bypass a normal safeguard used by cells to prevent cancer development.

The death of normal cells after growth factors are removed is partly accomplished by two proteins called Mcl-1 and Puma. But the cancer-causing version of Akt prevents these two proteins from accomplishing their tasks, allowing the cell to survive when it shouldn’t.

Once glucose was withdrawn from the environment, however, Akt was no longer able to maintain regulation of the key targeted proteins Mcl-1 and Puma, and the cells died.

“Akt’s dependence on glucose to provide an anti-cell-death signal could be a sign of metabolic addiction to glucose in cancer cells, and could give us a new avenue for a metabolic treatment of cancer,” said Dr. Rathmell.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Glucose metabolism sugar

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>