Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude discovery offers new avenues to understanding an aggressive form of leukemia

15.04.2008
Finding that a combination of genetic mutations can cause an aggressive form of acute lymphoblastic leukemia could lead to new cancer-fighting therapies

Researchers at St. Jude Children¡¦s Research Hospital have discovered evidence that a series of genetic mutations work together to initiate most cases of an aggressive and often-fatal form of acute lymphoblastic leukemia (ALL).

These defects, known as "cooperating oncogenic lesions," include the deletion of a gene, IKZF1, whose protein, Ikaros, normally helps guide the development of a blood stem cell into a lymphocyte. The researchers also found that loss of the same gene accompanied the transformation of chronic myelogenous leukemias (CMLs) to a life-threatening acute stage.

"These findings provide new avenues to pursue to gain a better understanding of these disease processes and, ultimately, to develop better therapies," said James R. Downing, M.D., St. Jude scientific director and chair of the Department of Pathology.

... more about:
»ALL »BCR-ABL1 »CML »Downing »IKAROS »lesion »leukemia »mutations

The new study, which he and his colleagues reported in the advance online publication of the journal "Nature," adds further support to a key concept in cancer genetics: Malignancies frequently require mutations in multiple genes in order to develop.

Cells contain oncogenes, which exist harmlessly until something triggers them to turn the cells malignant.

"It really takes a series of genetic lesions to lead to cancer," Downing said. "You may get activation of an oncogene, but you may also need activation of a tumor suppressor gene and an alteration in a cell-death pathway."

St. Jude researchers sought to identify genetic differences between CML and a form of acute leukemia known as BCR-ABL1ƒ{positive ALL.

Both diseases are characterized by the Philadelphia chromosome, which results from the translocation (joining) of parts of two different chromosomes. The result of this translocation is the expression of BCR-ABL1, an oncogene.

"It appears from our study, and other work published previously, that all you need to get CML is that chromosomal translocation and BCR-ABL1 expression," Downing said.

In their new study, the researchers re-examined the genetic makeup of 304 ALL patients who had been studied earlier. The group included 43 pediatric and adult BCR-ABL1 ALL patients and 23 adults with CML. Using a more sensitive technology, the scientists increased the number of genetic mutations found in their original gene survey.

In the first study, the gene most commonly altered was one called PAX5, followed by a gene designated IKZF1. Its protein, Ikaros, is involved in the development and differentiation of B lymphocyte cells, which are part of the immune system.

"The vast majority of pediatric acute lymphoblastic leukemias are of B-cell lineage," Downing said.

Among the ALL patients, the researchers found an average of 8.79 copy number alterations, a form of genetic change linked to the development and progression of cancer. The most common change was deletion of the gene for Ikaros.

The gene was deleted in 36 (83.7 percent) of the BCR-ABL1 ALL patients, including 76.2 percent of the pediatric and 90.9 percent of the adult cases.

"The loss of the Ikaros gene is a nearly obligatory lesion for the development of BCR-ABL1 ALL," Downing said, "and clearly must be a genetic lesion that is cooperating with BCR-ABL1."

Moreover, a gene known as CDKN2A was deleted in 53.5 percent of the BCR-ABL1 ALL patients, 87.5 percent of whom also had lost the gene for Ikaros. The PAX5 deletion occurred in 51 percent of the BCR-ABL1 ALL patients; and 95 percent of these people were missing the Ikaros gene.

Among the CML patients whose disease converted to ALL, two out of three had the deletion of the Ikaros gene; a lower percentage of those who converted to acute myeloblastic leukemia had the same gene deleted. That finding suggested that the deletion of Ikaros is cooperating with BCR-ABL1 to cause ALL.

"That is an important finding that may give insight into how that transformation occurs, or it may give insight into a better way to treat the disease, if one can figure out how the Ikaros deletion is working," Downing said.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: ALL BCR-ABL1 CML Downing IKAROS lesion leukemia mutations

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>