Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vascular system in mice

15.04.2008
Researchers of the German Cancer Research Center are studying in mice how tumors manipulate the human vascular system

The formation of new blood vessels, or angiogenesis, is an Achilles’ heel of tumor growth, because tumors depend on the supply of oxygen and nutrients for survival. Therefore, for some years now substances called angiogenesis inhibitors have been used in cancer treatment to suppress this process. In order to advance this new research field, a team of researchers headed by Professor Hellmut Augustin has developed a method to create a complex human vascular system in mice, which stays functional even after several months.

The method is based on the observation that isolated cells of the vessel walls, called endothelial cells, congregate spontaneously in cell cultures to form aggregates known as spheroids. “Individual endothelial cells floating in suspension are doomed to die – the association in spheroids stabilizes them,” says Hellmut Augustin. The scientists Abdullah Alajati and Anna Laib have been able to inject such spheroids, embedded in a gel matrix, under the skin of mice and to stimulate the formation of a network of human blood vessels by means of growth factors. The mice were genetically modified in such a way that their immune system was unable to reject the foreign cells. “The newly formed blood vessels are made exclusively of human endothelial cells,” explains Anna Laib, a young researcher at the DKFZ. “At the matrix borders the human endothelial cells establish contact with those of the mouse. In this way, the transplanted human vasculature gets connected to the blood circulation of the mouse.”

The method provides experimental freedom and may deliver answers to various questions of vascular biology research. Scientists can genetically manipulate the endothelial cells before transplantation in order to investigate the formation of vascular networks. In addition, it is possible to test the effect of pharmacological substances; the Freiburg-based company ProQinase GmbH, which is involved in the study, is already conducting such experiments. “The method is even interesting for the production of artificial tissues,” Hellmut Augustin says. “So far, one difficulty with the use of artificial replacement tissues has been to create a functioning vascular system that sufficiently supplies the tissue constructs.”

... more about:
»Hellmut »Tissue »endothelial »vascular

Abdullah Alajati, Anna M Laib, Holger Weber, Anja M Boos, Arne Bartol, Kristian Ikenberg, Thomas Korff, Hanswalter Zentgraf, Cynthia Obodozie, RalphGraeser, Sven Christian, Günter Finkenzeller, G Björn Stark, Mélanie Héroult & Hellmut G Augustin: Spheroid-based engineering of a human vasculature in mice. Nature Methods, April 2008, DOI: 10.1038/nmeth.1198

Das Deutsche Krebsforschungszentrum hat die Aufgabe, die Mechanismen der Krebsentstehung systematisch zu untersuchen und Krebsrisikofaktoren zu erfassen. Die Ergebnisse dieser Grundlagenforschung sollen zu neuen Ansätzen in Vorbeugung, Diagnose und Therapie von Krebserkrankungen führen. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

Dr. Stefanie Seltmann | EurekAlert!
Further information:
http://www.dkfz.de

Further reports about: Hellmut Tissue endothelial vascular

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>