Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects evolved radically different strategy to smell

15.04.2008
Scientists find that insects use fast-acting ion channels to smell odors, a major break with the ideology of the field -- and evolution

Darwin's tree of life represents the path and estimates the time evolution took to get to the current diversity of life. Now, new findings suggest that this tree, an icon of evolution, may need to be redrawn. In research to be published in the April 13 advance online issue of Nature, researchers at Rockefeller University and the University of Tokyo have joined forces to reveal that insects have adopted a strategy to detect odors that is radically different from those of other organisms -- an unexpected and controversial finding that may dissolve a dominant ideology in the field.

Since 1991, researchers assumed that all vertebrates and invertebrates smell odors by using a complicated biological apparatus much like a Rube Goldberg device. For instance, someone pushing a doorbell would set off a series of elaborate, somewhat wacky, steps that culminate in the rather simple task of opening the door.

In the case of an insect's ability to smell, researchers believed that when molecules wafting in the air travel up the insect's nose, they latch onto a large protein (called a G-protein coupled odorant receptor) on the surface of the cell and set off a chain of similarly elaborate steps to open a molecular gate nearby, signaling the brain that an odor is present.

... more about:
»Ion »Strategy »Vosshall »insect »olfactory »smell

"It's that way in the nematode, it's that way in mammals, it's that way in every known vertebrate," says study co-author Leslie Vosshall, head of the Laboratory of Neurogenetics and Behavior at Rockefeller University. "So it's actually unreasonable to think that insects use a different strategy to detect odors. But here, we show that insects have gotten rid of all this stuff in the middle and activate the 'gate' directly."

The gate, a doughnut-shaped protein called an ion channel, provides a safe pathway for ions to flow into a cell. When molecules bind to the odor-sensitive ion channel, the protein changes its shape much like a gate or door changes its conformation as it is opened and closed. Opened, it allows millions of ions to surge into the cell. Closed, it prohibits the activity of the ions from sending a signal to the brain that an odor is present.

At the University of Tokyo, Vosshall's colleague Kazushige Touhara and his lab members puffed molecules onto cells engineered to make insect olfactory receptors. They then measured how long it took for the ion channel to open and recorded their electrical movement as they surged inside the cell via the channel. The rush of electrical activity occurred too fast for a series of steps to be involved, says Vosshall. In addition, poisoning several proteins involved in the G-protein pathway didn't affect the ions or the ion channel, suggesting that G-protein signaling isn't primarily involved in insect smell.

Experiment after experiment, "the most consistent interpretation is that these are ion channels directly gated by odors," says Vosshall. "But the dominant thinking in the field may have reflected an experimental bias that aimed at proving a more elaborate scheme."

The ion channels don't resemble any known ion channel on Earth, says Vosshall. They are composed of two proteins that work in tandem with one another: an olfactory receptor and its coreceptor, Or83b. While the coreceptor is common to every ion channel, the olfactory receptor is unique. Together, they form the olfactory receptor complex. Vosshall and Touhara specifically show that this complex forms nonselective cation channels, meaning that they allow any ion to pass through the gate as long as it has a positive charge.

Touhara and Vosshall developed their ion channel hypothesis in parallel with Vosshall's work on DEET, a widely used chemical in bug spray that jams the receptor complex. This research, which was published in Science last month, also showed that DEET jams other proteins that have nothing to do with smell, including several different types of ion channels that play important roles in the human nervous system.

What these radically different proteins have in common, though, is that they all specifically inhibit the influx of positively charged ions into the cell. "Now the curious result in the DEET paper showing that this insect repellent blocks insect olfactory receptors and unrelated ion channels makes sense," says Vosshall. "I am optimistic that we can come up with blockers specific for this very strange family of insect olfactory ion channels."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Ion Strategy Vosshall insect olfactory smell

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>