Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping unwanted cell death: Implications for drug discovery

15.04.2008
Kinase identified as cellular target for inhibiting necrosis in disease

Research published in Nature Chemical Biology reveals that three specific inhibitors of a cell death pathway, termed necroptosis, all target and inhibit RIP1 kinase, a protein that can direct cells into necrosis. Induced by trauma such as a heart attack or stroke, this form of necrotic death can result in tissue damage contributing to death or long-term disability. The findings present a novel avenue for drug development.

“Our research found that RIP1 kinase can be inhibited by three small molecules: necrostatin-1, -3 and -5,” reports first author Alexei Degterev, PhD, assistant professor at Tufts University School of Medicine and member of the biochemistry program faculty of the Sackler School of Graduate Biomedical Sciences. “Overall, these data establish RIP1 kinase as a new target for therapeutic drug development for human diseases involving necrotic tissue injury, and they establish necrostatins as first-in-class potent and selective inhibitors of RIP1 kinase,” the authors write, including last author, Junying Yuan, PhD, professor at Harvard Medical School.

Necrosis is relevant to many diseases, particularly those that involve an acute event, such as heart attack or stroke. “Cells are programmed to die when they reach the end of their lifecycle and that regulated process is called apoptosis. Cells can also be killed through pathways not controlled by apoptosis. Until recently, this type of cell death, termed necrosis, was believed to be unregulated, a type of accidental cell death caused when cells are placed under extreme stress such as during a heart attack, stroke or organ failure,” says Degterev.

Previous research, as well as research by others, determined that necroptosis, one type of necrosis, is regulated (like apoptosis) and has a specific biochemical pathway. “Through our previous work, we have developed potent and specific small molecules capable of preventing necroptosis in isolated cells,” explains Degterev. This work, done in Yuan’s lab at Harvard, was subsequently awarded patents. “The next step, then, was to look for the target of the inhibition by necrostatins to understand how they inhibit necroptosis. We were particularly interested in RIP1 kinase because it was previously reported by other groups to be important for necroptosis and necrostatin-1 looked similar to known kinase inhibitors.”

The researchers employed several molecular techniques to determine the role these necrostatins played in inhibiting necroptosis. To test whether necrostatin-1 is a RIP1 kinase inhibitor in vitro, researchers added necrostatin-1 in incremental doses to purified RIPI kinase, and observed a dose-dependent decrease in its activity (phosphorylation). To validate their discovery, the researchers made small and specific structural changes to necrostatin-1, to see if loss of the RIP1 kinase inhibition resulted in the inability of the necrostatin-1 analogs to prevent necrosis. Similar experiments were conducted for necrostatin-3 and necrostatin-5 with similar results, which was surprising as the structure of these two molecules are very different from necrostatin-1. Further, based on the results of their analysis, researchers put forward the model describing mechanisms of RIP1 inhibition by necrostatin-1.

“Next, research needs to determine the cellular pathway initiated by RIP1 kinase activity, develop better tools to further investigate its role in human disease, and establish how necrostatins are able to prevent RIP1 kinase from signaling the cell to kill itself,” says Degterev. “This may one day result in effective therapies, currently not available, for many life-threatening diseases.”

“These findings on RIP1 kinase inhibitors suggest entirely new possibilities to investigating the role of necroptosis in disease and indicate that these inhibitors may provide ways to prevent extensive tissue damage,” says Naomi Rosenberg, PhD, dean at the Sackler School of Graduate Biomedical Sciences and vice dean for research at Tufts University School of Medicine. “Discoveries like this reveal how basic science research provides the foundation to our understanding of disease and can point toward possible novel therapeutic strategies to ease the burden of those diseases.”

This work was supported in part by grants to Harvard from the National Institute of General Medicines (NIGMS), the National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), and by funding from the Harvard Center for Neurodegeneration and Repair. Alexei Degterev is a recipient of a NIA Mentored Research Scientist Career Development Award and a Massachusetts Medical Foundation Smith Family New Investigator Award. NIGM, NIA, NINDS are institutes of the National Institutes of Health.

Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. Nature Chemical Biology. 2008 (May);Vol 4, Issue 5. “Identification of RIP1 kinase as a specific cellular target of necrostatins.” Published online: April 13 2008, doi 10.1038/nchembio.83

About Tufts University School of Medicine

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.

Siobhan E. Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

Further reports about: Cellular Degterev Harvard Inhibitor Kinase RIP1 necroptosis necrosis necrostatin-1 necrostatins

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>