Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies treatment target for liver cancer recurrence and survival

14.04.2008
Deadly and difficult to treat, liver cancer has long resisted attempts by researchers to develop ways to prolong life and prevent recurrence. But Mayo Clinic Cancer Center, in collaboration with the National Cancer Institute, reports in the April issue of Hepatology that the protein sulfatase 2 (SULF2) may provide one of the keys needed to begin the design of new therapies.

Mayo Clinic Cancer Center leads the field in researching the impact and effect of SULF1, a protein whose normal role is to degrade heparin sulfate proteoglycans -- molecules that are part sugar and part protein. Mayo scientists have found that the protein also helps inhibit tumor growth. Now, Mayo researchers are studying a related gene, SULF2.

The role of the SULF2 gene and protein has not been fully defined, but in this study, researchers investigated the effect of SULF2 on liver tumor growth in the laboratory. They found that increased expression of SULF2 enhances cancer cell growth and migration, whereas decreased expression reduces both.

“The liver is designed to excrete toxins, and its tumors are no exception,” says Mayo Clinic gastroenterologist Lewis Roberts, M.B.Ch.B., Ph.D., the study’s primary investigator. “Our problem is that the tumors tend to excrete chemotherapeutic agents rather than be affected by them. So we are looking for ways to get around that.”

... more about:
»SULF2 »Target »Treatment »factor »liver »sulfate

The researchers sought answers by examining a protein related to one they already knew had a role in suppressing liver tumors. SULF1 and SULF2 are similar proteins, but cause opposing results. SULF1 removes sulfate groups that allow growth factors to bind to cells, thus inhibiting growth. The investigators found that SULF2 did the opposite -- it increased binding of a specific growth factor, fibroblast growth factor 2 (FGF2), to tumor cells, and also increased expression of the heparan sulfate proteoglycan glypican 3 (GPC3), which plays an important role in cell division and growth. These findings were confirmed in mouse models.

This discovery indicates if scientists can decrease the levels or activity of SULF2 in a tumor, they might be able to stop its development. Mayo researchers are exploring use of an agent that mimics heparin and inhibits SULF2. They are also examining whether preventing heparin sulfate synthesis would inhibit tumor growth.

“If something has a very broad effect on signaling by growth factors, it may lead to an effective treatment,” says Jinping Lai, M.D., Ph.D., a Mayo oncology researcher and the lead author of the study. “SULF2 has a number of characteristics that make it an attractive target, such as the fact that it is widely present in tumors. We are exploring a number of options with SULF2 as a focal point for treatment not only in liver cancer, but also in head and neck, pancreas, breast and other types of cancer.”

The researchers hope to identify drugs that block SULF2, and seek to thoroughly understand the mechanisms involved, including the determination of what other growth signaling pathways are affected by SULF2. They are also looking further at GPC3 as a potential biomarker for liver cancer or as a possible therapeutic target.

In 2007, Dr. Lai presented information at the annual meeting of the American Association for Cancer Research on the role of SULF2 in survival of patients with head and neck cancer -- the first concrete link to survival of patients with a specific tumor type.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: SULF2 Target Treatment factor liver sulfate

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>