Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies treatment target for liver cancer recurrence and survival

14.04.2008
Deadly and difficult to treat, liver cancer has long resisted attempts by researchers to develop ways to prolong life and prevent recurrence. But Mayo Clinic Cancer Center, in collaboration with the National Cancer Institute, reports in the April issue of Hepatology that the protein sulfatase 2 (SULF2) may provide one of the keys needed to begin the design of new therapies.

Mayo Clinic Cancer Center leads the field in researching the impact and effect of SULF1, a protein whose normal role is to degrade heparin sulfate proteoglycans -- molecules that are part sugar and part protein. Mayo scientists have found that the protein also helps inhibit tumor growth. Now, Mayo researchers are studying a related gene, SULF2.

The role of the SULF2 gene and protein has not been fully defined, but in this study, researchers investigated the effect of SULF2 on liver tumor growth in the laboratory. They found that increased expression of SULF2 enhances cancer cell growth and migration, whereas decreased expression reduces both.

“The liver is designed to excrete toxins, and its tumors are no exception,” says Mayo Clinic gastroenterologist Lewis Roberts, M.B.Ch.B., Ph.D., the study’s primary investigator. “Our problem is that the tumors tend to excrete chemotherapeutic agents rather than be affected by them. So we are looking for ways to get around that.”

... more about:
»SULF2 »Target »Treatment »factor »liver »sulfate

The researchers sought answers by examining a protein related to one they already knew had a role in suppressing liver tumors. SULF1 and SULF2 are similar proteins, but cause opposing results. SULF1 removes sulfate groups that allow growth factors to bind to cells, thus inhibiting growth. The investigators found that SULF2 did the opposite -- it increased binding of a specific growth factor, fibroblast growth factor 2 (FGF2), to tumor cells, and also increased expression of the heparan sulfate proteoglycan glypican 3 (GPC3), which plays an important role in cell division and growth. These findings were confirmed in mouse models.

This discovery indicates if scientists can decrease the levels or activity of SULF2 in a tumor, they might be able to stop its development. Mayo researchers are exploring use of an agent that mimics heparin and inhibits SULF2. They are also examining whether preventing heparin sulfate synthesis would inhibit tumor growth.

“If something has a very broad effect on signaling by growth factors, it may lead to an effective treatment,” says Jinping Lai, M.D., Ph.D., a Mayo oncology researcher and the lead author of the study. “SULF2 has a number of characteristics that make it an attractive target, such as the fact that it is widely present in tumors. We are exploring a number of options with SULF2 as a focal point for treatment not only in liver cancer, but also in head and neck, pancreas, breast and other types of cancer.”

The researchers hope to identify drugs that block SULF2, and seek to thoroughly understand the mechanisms involved, including the determination of what other growth signaling pathways are affected by SULF2. They are also looking further at GPC3 as a potential biomarker for liver cancer or as a possible therapeutic target.

In 2007, Dr. Lai presented information at the annual meeting of the American Association for Cancer Research on the role of SULF2 in survival of patients with head and neck cancer -- the first concrete link to survival of patients with a specific tumor type.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: SULF2 Target Treatment factor liver sulfate

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>