Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein that regulates killer cells

21.06.2002


Researchers at the University of Toronto and Mount Sinai Hospital have identified a protein that plays a critical role in the regulation of "natural killers cells" in the immune system’s battle against foreign and diseased cells.



"Our research is a small part of the larger problem of how viruses and diseased cells ravage the body and circumvent our immune system," says Kathleen Binns, a U of T doctoral student in medical genetics and microbiology and an author on a paper in the June 20 issue of Science.

Using mass spectrometry, Binns, who does research in the Samuel Lunenfeld Research Institute at Mount Sinai and MDS Sciex, sequenced and identified a mystery protein from co-researchers at the Swiss Federal Institute of Technology in Switzerland.


Once identified, the protein (SSPase) was sent back to the Swiss researchers where they cloned its gene and sequenced its DNA. That gene, they discovered, is a key component involved in regulation of "natural killer cells" - cells produced by the body’s immune system that attack foreign or mutated cells like caused by viruses or cancer.

"This research gives us a better understanding of how the immune system works. As a result, we have a better understanding of how viruses and cancer try to get around this process. One day, we will hopefully be able to develop treatments and therapies to counter these rogue cells," says Binns.

A group of genes called the major histocompatibility complex I (MHC-I) are a natural part of the immune system and present in most cells in the body, explains Binns. Acting like an information relay, the MHC-I molecules retrieve bits and pieces of the proteins from inside the cell and display them on the cell surface. "MHC complexes essentially give a read out of what’s inside the cell," she says.

T-cells, one of the main components of the immune system, "examine" the protein fragments on the cell surface and if they recognize them, the T-cells move on. If, however, the T-cells do not recognize the fragments, the cell may be hosting a virus or manufacturing mutant proteins (as in the case of cancer). The T-cells then react by attacking and killing the "diseased" cells.

Some virus and tumor cells, however, have evolved mechanisms that circumvent the T-cell attack by stopping MHC production and the display of disease proteins, says Binns.

As a countermeasure, the researchers found that the immune system developed a monitor that employs the SSPase protein and uses a second type of immune cell known as a natural killer cell, she notes. The protein processes MHC-I molecules to make a peptide signal. If sufficient levels of the MHC-I protein are present in the cell, the natural killer cell moves on. If, however, the killer cell detects insufficient levels of the MHC-I protein because it has not received the particular peptide signal, the killer cell attacks and destroys the suspect cell.

"This process is a check on viruses and abnormal cells that try to bypass the T-cell system," says Binns. "Viruses become smarter, our immune systems work to counteract them and the viruses get smarter again. There’s this constant evolution for the drive to survive, and viruses and cancer cells have the same drive to survive that we do."

Binns conducted the research with Andreas Weihofen, lead author on the study, Marius Lemberg and Bruno Martoglio of the Institute of Biochemistry at the Swiss Federal Institute of Technology, and Keith Ashman, an investigator at the Samuel Lunenfeld Research Institute at Mount Sinai Hospital.

This research was funded by the Natural Science and Engineering Research Council of Canada and MDS Sciex, the Swiss Federal Institute of Technology and the Swiss National Science Foundation.


CONTACT:

Kathleen Binns
Department of Medical Genetics and Microbiology
416-586-4524
binns@mshri.on.ca

Janet Wong
U of T Public Affairs
416-978-5949
jf.wong@utoronto.ca




Janet Wong | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>