Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify protein that regulates killer cells


Researchers at the University of Toronto and Mount Sinai Hospital have identified a protein that plays a critical role in the regulation of "natural killers cells" in the immune system’s battle against foreign and diseased cells.

"Our research is a small part of the larger problem of how viruses and diseased cells ravage the body and circumvent our immune system," says Kathleen Binns, a U of T doctoral student in medical genetics and microbiology and an author on a paper in the June 20 issue of Science.

Using mass spectrometry, Binns, who does research in the Samuel Lunenfeld Research Institute at Mount Sinai and MDS Sciex, sequenced and identified a mystery protein from co-researchers at the Swiss Federal Institute of Technology in Switzerland.

Once identified, the protein (SSPase) was sent back to the Swiss researchers where they cloned its gene and sequenced its DNA. That gene, they discovered, is a key component involved in regulation of "natural killer cells" - cells produced by the body’s immune system that attack foreign or mutated cells like caused by viruses or cancer.

"This research gives us a better understanding of how the immune system works. As a result, we have a better understanding of how viruses and cancer try to get around this process. One day, we will hopefully be able to develop treatments and therapies to counter these rogue cells," says Binns.

A group of genes called the major histocompatibility complex I (MHC-I) are a natural part of the immune system and present in most cells in the body, explains Binns. Acting like an information relay, the MHC-I molecules retrieve bits and pieces of the proteins from inside the cell and display them on the cell surface. "MHC complexes essentially give a read out of what’s inside the cell," she says.

T-cells, one of the main components of the immune system, "examine" the protein fragments on the cell surface and if they recognize them, the T-cells move on. If, however, the T-cells do not recognize the fragments, the cell may be hosting a virus or manufacturing mutant proteins (as in the case of cancer). The T-cells then react by attacking and killing the "diseased" cells.

Some virus and tumor cells, however, have evolved mechanisms that circumvent the T-cell attack by stopping MHC production and the display of disease proteins, says Binns.

As a countermeasure, the researchers found that the immune system developed a monitor that employs the SSPase protein and uses a second type of immune cell known as a natural killer cell, she notes. The protein processes MHC-I molecules to make a peptide signal. If sufficient levels of the MHC-I protein are present in the cell, the natural killer cell moves on. If, however, the killer cell detects insufficient levels of the MHC-I protein because it has not received the particular peptide signal, the killer cell attacks and destroys the suspect cell.

"This process is a check on viruses and abnormal cells that try to bypass the T-cell system," says Binns. "Viruses become smarter, our immune systems work to counteract them and the viruses get smarter again. There’s this constant evolution for the drive to survive, and viruses and cancer cells have the same drive to survive that we do."

Binns conducted the research with Andreas Weihofen, lead author on the study, Marius Lemberg and Bruno Martoglio of the Institute of Biochemistry at the Swiss Federal Institute of Technology, and Keith Ashman, an investigator at the Samuel Lunenfeld Research Institute at Mount Sinai Hospital.

This research was funded by the Natural Science and Engineering Research Council of Canada and MDS Sciex, the Swiss Federal Institute of Technology and the Swiss National Science Foundation.


Kathleen Binns
Department of Medical Genetics and Microbiology

Janet Wong
U of T Public Affairs

Janet Wong | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>