Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston College biologists build a better mouse model for cancer research

11.04.2008
Cell line advance yields new finding on the role of defensive macrophage cells in cancer's spread

Researchers at Boston College have developed the first laboratory mouse model that mimics cancer’s spread through the human body. Using their novel cell line, the team discovered one of the body’s primary defensive cells plays a role in cancer’s attack.

The development of a new animal model – a line of cancer cells injected into a laboratory mouse – that displays the full spectrum of systemic metastatic cancer in humans removes a "scientific stumbling block" in advancing cancer research and potential treatments, according to Boston College Biologist Thomas Seyfried, whose findings appear this week in the online version of the International Journal of Cancer and will be presented at the annual meeting of the American Association of Cancer Research in San Diego.

"What we have developed is the first model in the mouse that replicates all of the hallmarks of metastatic cancer," said Seyfried, the project leader. “Now, we have a tool that can be effective in identifying basic mechanisms and new therapies to treat the disease.”

... more about:
»Line »Model »Seyfried »injected »macrophage »metastatic »spread

Researchers produced two cell lines that when injected into mice express all the major biological processes of metastasis. A third line, when injected, grew rapidly, but did not lead to metastatic cancer.

Previous mouse models contain limitations in effectiveness and speed. Many models fail to produce cancer in each animal subject and it often takes several months before cancer is detected. In other models, cancer cells are transplanted into animals with disabled immune systems. Within three weeks, the two Seyfried models produced tumors in 100 percent of the mice, which had healthy immune systems.

The cell line enabled researchers to make a new discovery about metastatic cells, namely that these cells express properties of macrophages, tissue cells that usually protect organisms against invading microbes in the environment and bacteria that lead to infection and disease.

"We show that the metastatic cells have macrophage properties," said doctoral researcher Leanne Huysentruyt, the lead author of the paper, who will present the findings April 13, when the American Association for Cancer Research meets. “Knowing this should allow for new types of therapies that target the macrophage-like cells.”

Metastasis, the spread of cancer from a primary site to other tissues and organs within the body, is the primary cause of death among cancer patients and remains largely unmanageable. Without an animal model that consistently reproduces human-like metastases, researchers have relied primarily on individual cancer patients to assess new therapies.

"The development of new drugs for cancer lags behind basic research," said Seyfried. "How can you cure a disease when you have no model system that replicates the disease except for the sick humans? It's almost as if each person who develops the disease is a guinea pig."

Seyfried said when a person has metastatic cancer, the macrophage-like tumor cells multiply and attack the body, system by system. Human metastatic cancers include breast, lung, colon and melanoma. When injected into mice, the metastatic cancer cells spread to other systems within three weeks.

"This will have an impact on how we view the role of macrophages in cancer progression," said Huysentruyt.

Seyfried’s research was funded, in part, by a grant from the American Institute of Cancer Research, which praised the findings.

"We are happy to be able to contribute to Dr. Seyfried's academic and professional progress," said Ivana Vucenik, a spokeswoman for the institute. "As a result of our support, Dr. Seyfried has made a major advance in this field."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

Further reports about: Line Model Seyfried injected macrophage metastatic spread

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>