Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells on path to becoming mature T-cells more flexible than commonly thought

Findings may shed light on T-cell leukemias and immunodeficiencies

Contrary to the currently accepted model of T-cell development, researchers at the University of Pennsylvania School of Medicine have found that juvenile cells on their way to becoming mature immune cells can develop into either T cells or other blood-cell types versus only being committed to the T-cell path. The findings appear in this week’s issue of Nature, and have implications for better understanding how T-cell leukemias and other disorders arise.

“It is critically important to understand the life history of the T-cell lineage and to define the steps that multipotent progenitor cells take to mature to T cells,” says lead author Jeremiah Bell, PhD, Postdoctoral Fellow in the Department of Laboratory Medicine and Pathology. “Whether you’re trying to understand T-cell immunodeficiencies, T-cell cancers, or other T-cell-related disorders, you first need to know the steps in T-cell development, and the signals acting at each step.”

The life of a T cell, and all other blood cells, begins in the bone marrow as a hematopoietic stem cell (HSC). HSCs have the potential to become all the different types of cells in the blood, including red blood cells, platelets, white blood cells, and all the cells involved in defending the body against pathogens and foreign proteins. The first stage in the process leading to such diversity is for the HSCs to become the precursor cells called multipotent progenitor (MPPs) cells.

The accepted version of what happens next is that there is a fork in the road to becoming a mature blood cell. Each MPP commits to becoming either a precursor of red cells and non-lymphoid white blood cells (called the myeloid pathway) or a precursor of T and B cells (called the lymphoid pathway). The T-cell precursors then go to the thymus, a small organ located under the breastbone, where they are called early thymic progenitors (ETPs).

“If the currently accepted model of T-cell development is correct, then early thymic progenitors, the ETPs, should be able to make T cells, but unable to make myeloid cells,” explains senior author Avinash Bhandoola, PhD, Associate Professor of Pathology and Laboratory Medicine. “Jeremiah instead found that progenitor cells that make it to the thymus have not yet committed to either the myeloid or T-cell pathway.”

In order to determine the potential of ETPs, the team first had to separate ETPs from all the other cells in a mouse thymus. This was accomplished by sorting the cells based on surface tags that are characteristic of the ETP cell type.

Next, single ETP cells were painstakingly placed into culture so that each container received only one cell. “We really wanted to examine single cells,” says Bell. “Otherwise, even if you do see T cells and myeloid cells, you can’t be certain that they all came from the same progenitor cell.” After growing and dividing for several days, the cells from each container were examined, again by surface tags, to see whether T cells or myeloid cells were present.

To the surprise of Bell and Bhandoola, most of the cultures begun with single cells had become a mixture of T cells and myeloid cells. This means that the majority of early thymic progenitor cells do not commit to becoming T cells by the time they get to the thymus gland. ETP cells retained the ability to become either T cells or myeloid cells.

Since ETPs showed the potential to give rise to myeloid cell types, the team also asked whether some of the myeloid cells in the thymus normally arise from ETPs. The process of T-cell development in the thymus requires progenitor cells to rearrange pieces of DNA. This process of DNA rearrangement is required to build the antigen receptor used by T cells, and permanently marks ETPs. Bell and Bhandoola found that permanent marks of past DNA rearrangements were present in myeloid cells within the thymus, but not in myeloid cells at other sites. This showed that ETPs give rise to myeloid cells in the normal thymus. “It’s very hard to accommodate these data with our old way of thinking about T-cell development,” notes Bhandoola.

“Now, we want to understand how ETPs make the decision to become myeloid cells or T cells within the thymus,” says Bell. “Although our research is focused on basic science, it is relevant to figuring out how T-cell leukemias develop from early progenitor cells.”

“We’re also wondering about the myeloid cells in the thymus that arise from ETPs,” adds Bhandoola. “Are they doing something we need to know about, and what could that be?”

Karen Kreeger | EurekAlert!
Further information:

Further reports about: Bhandoola Development ETP HSC MATURE Precursor T cells Thymus blood cells myeloid progenitor

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>