Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells on path to becoming mature T-cells more flexible than commonly thought

11.04.2008
Findings may shed light on T-cell leukemias and immunodeficiencies

Contrary to the currently accepted model of T-cell development, researchers at the University of Pennsylvania School of Medicine have found that juvenile cells on their way to becoming mature immune cells can develop into either T cells or other blood-cell types versus only being committed to the T-cell path. The findings appear in this week’s issue of Nature, and have implications for better understanding how T-cell leukemias and other disorders arise.

“It is critically important to understand the life history of the T-cell lineage and to define the steps that multipotent progenitor cells take to mature to T cells,” says lead author Jeremiah Bell, PhD, Postdoctoral Fellow in the Department of Laboratory Medicine and Pathology. “Whether you’re trying to understand T-cell immunodeficiencies, T-cell cancers, or other T-cell-related disorders, you first need to know the steps in T-cell development, and the signals acting at each step.”

The life of a T cell, and all other blood cells, begins in the bone marrow as a hematopoietic stem cell (HSC). HSCs have the potential to become all the different types of cells in the blood, including red blood cells, platelets, white blood cells, and all the cells involved in defending the body against pathogens and foreign proteins. The first stage in the process leading to such diversity is for the HSCs to become the precursor cells called multipotent progenitor (MPPs) cells.

The accepted version of what happens next is that there is a fork in the road to becoming a mature blood cell. Each MPP commits to becoming either a precursor of red cells and non-lymphoid white blood cells (called the myeloid pathway) or a precursor of T and B cells (called the lymphoid pathway). The T-cell precursors then go to the thymus, a small organ located under the breastbone, where they are called early thymic progenitors (ETPs).

“If the currently accepted model of T-cell development is correct, then early thymic progenitors, the ETPs, should be able to make T cells, but unable to make myeloid cells,” explains senior author Avinash Bhandoola, PhD, Associate Professor of Pathology and Laboratory Medicine. “Jeremiah instead found that progenitor cells that make it to the thymus have not yet committed to either the myeloid or T-cell pathway.”

In order to determine the potential of ETPs, the team first had to separate ETPs from all the other cells in a mouse thymus. This was accomplished by sorting the cells based on surface tags that are characteristic of the ETP cell type.

Next, single ETP cells were painstakingly placed into culture so that each container received only one cell. “We really wanted to examine single cells,” says Bell. “Otherwise, even if you do see T cells and myeloid cells, you can’t be certain that they all came from the same progenitor cell.” After growing and dividing for several days, the cells from each container were examined, again by surface tags, to see whether T cells or myeloid cells were present.

To the surprise of Bell and Bhandoola, most of the cultures begun with single cells had become a mixture of T cells and myeloid cells. This means that the majority of early thymic progenitor cells do not commit to becoming T cells by the time they get to the thymus gland. ETP cells retained the ability to become either T cells or myeloid cells.

Since ETPs showed the potential to give rise to myeloid cell types, the team also asked whether some of the myeloid cells in the thymus normally arise from ETPs. The process of T-cell development in the thymus requires progenitor cells to rearrange pieces of DNA. This process of DNA rearrangement is required to build the antigen receptor used by T cells, and permanently marks ETPs. Bell and Bhandoola found that permanent marks of past DNA rearrangements were present in myeloid cells within the thymus, but not in myeloid cells at other sites. This showed that ETPs give rise to myeloid cells in the normal thymus. “It’s very hard to accommodate these data with our old way of thinking about T-cell development,” notes Bhandoola.

“Now, we want to understand how ETPs make the decision to become myeloid cells or T cells within the thymus,” says Bell. “Although our research is focused on basic science, it is relevant to figuring out how T-cell leukemias develop from early progenitor cells.”

“We’re also wondering about the myeloid cells in the thymus that arise from ETPs,” adds Bhandoola. “Are they doing something we need to know about, and what could that be?”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Bhandoola Development ETP HSC MATURE Precursor T cells Thymus blood cells myeloid progenitor

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>