Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells on path to becoming mature T-cells more flexible than commonly thought

11.04.2008
Findings may shed light on T-cell leukemias and immunodeficiencies

Contrary to the currently accepted model of T-cell development, researchers at the University of Pennsylvania School of Medicine have found that juvenile cells on their way to becoming mature immune cells can develop into either T cells or other blood-cell types versus only being committed to the T-cell path. The findings appear in this week’s issue of Nature, and have implications for better understanding how T-cell leukemias and other disorders arise.

“It is critically important to understand the life history of the T-cell lineage and to define the steps that multipotent progenitor cells take to mature to T cells,” says lead author Jeremiah Bell, PhD, Postdoctoral Fellow in the Department of Laboratory Medicine and Pathology. “Whether you’re trying to understand T-cell immunodeficiencies, T-cell cancers, or other T-cell-related disorders, you first need to know the steps in T-cell development, and the signals acting at each step.”

The life of a T cell, and all other blood cells, begins in the bone marrow as a hematopoietic stem cell (HSC). HSCs have the potential to become all the different types of cells in the blood, including red blood cells, platelets, white blood cells, and all the cells involved in defending the body against pathogens and foreign proteins. The first stage in the process leading to such diversity is for the HSCs to become the precursor cells called multipotent progenitor (MPPs) cells.

The accepted version of what happens next is that there is a fork in the road to becoming a mature blood cell. Each MPP commits to becoming either a precursor of red cells and non-lymphoid white blood cells (called the myeloid pathway) or a precursor of T and B cells (called the lymphoid pathway). The T-cell precursors then go to the thymus, a small organ located under the breastbone, where they are called early thymic progenitors (ETPs).

“If the currently accepted model of T-cell development is correct, then early thymic progenitors, the ETPs, should be able to make T cells, but unable to make myeloid cells,” explains senior author Avinash Bhandoola, PhD, Associate Professor of Pathology and Laboratory Medicine. “Jeremiah instead found that progenitor cells that make it to the thymus have not yet committed to either the myeloid or T-cell pathway.”

In order to determine the potential of ETPs, the team first had to separate ETPs from all the other cells in a mouse thymus. This was accomplished by sorting the cells based on surface tags that are characteristic of the ETP cell type.

Next, single ETP cells were painstakingly placed into culture so that each container received only one cell. “We really wanted to examine single cells,” says Bell. “Otherwise, even if you do see T cells and myeloid cells, you can’t be certain that they all came from the same progenitor cell.” After growing and dividing for several days, the cells from each container were examined, again by surface tags, to see whether T cells or myeloid cells were present.

To the surprise of Bell and Bhandoola, most of the cultures begun with single cells had become a mixture of T cells and myeloid cells. This means that the majority of early thymic progenitor cells do not commit to becoming T cells by the time they get to the thymus gland. ETP cells retained the ability to become either T cells or myeloid cells.

Since ETPs showed the potential to give rise to myeloid cell types, the team also asked whether some of the myeloid cells in the thymus normally arise from ETPs. The process of T-cell development in the thymus requires progenitor cells to rearrange pieces of DNA. This process of DNA rearrangement is required to build the antigen receptor used by T cells, and permanently marks ETPs. Bell and Bhandoola found that permanent marks of past DNA rearrangements were present in myeloid cells within the thymus, but not in myeloid cells at other sites. This showed that ETPs give rise to myeloid cells in the normal thymus. “It’s very hard to accommodate these data with our old way of thinking about T-cell development,” notes Bhandoola.

“Now, we want to understand how ETPs make the decision to become myeloid cells or T cells within the thymus,” says Bell. “Although our research is focused on basic science, it is relevant to figuring out how T-cell leukemias develop from early progenitor cells.”

“We’re also wondering about the myeloid cells in the thymus that arise from ETPs,” adds Bhandoola. “Are they doing something we need to know about, and what could that be?”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Bhandoola Development ETP HSC MATURE Precursor T cells Thymus blood cells myeloid progenitor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>