Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast in an Egg Shell

10.04.2008
Artificial mineral coat helps yeast cells to have a longer life and new properties

Nature’s eggshells have inspired Chinese researchers: A team led by Ruikang Tang at Zhejiang University have successfully equipped living yeast cells with an artificial mineral coating. As reported in the journal Angewandte Chemie, the hard inorganic shells protect the cells, allowing them to survive longer storage times. By incorporating iron oxide particles into the shells the researchers were also able to make them magnetic.

Our breakfast egg is an anomaly of nature; a single cell protected by a thin mineral layer. With the exception of some tiny amoebas and diatoms, individual cells do not normally have a hard shell. The Chinese researchers have now developed a strategy to equip cells of baker’s yeast, Saccharomyces cerevisiae, with an artificial shell of calcium phosphate. First, a synthetic polymer, such as a polyacrylate, is attached to the cell walls of the yeast cells. The negatively charged carboxylate groups (COO–) of the polymer stick out into the surrounding calcium phosphate containing solution. Positively charged calcium ions from the medium bind to the carboxylate groups and attract the negatively charged phosphate ions to form nuclei for the growth of calcium phosphates. In the course of the mineralization process, the yeast cells are completely encapsulated by an inorganic layer.

Yet the cells remain viable. They enter into a resting state, in which they even survive a lack of the nutrients normally used for yeast storage. With their shells, the yeast cells last much longer; whereas a maximum of 20 % of yeast cells are normally viable after a month, 85 % of the cells with shells last that long. In addition, the shell protects the cells from unfavorable external conditions, even the attack of enzymes that break up cell walls. When the shell is dismantled by lightly acidic conditions or ultrasound, the yeast cells resume their normal cell cycle.

... more about:
»phosphate »yeast

Genetically modified yeasts are also used to produce important pharmaceutical agents, such as interferon and insulin, as well as vaccines. In molecular biology research, easily cultivated yeasts are often used for basic investigations of cellular processes and for the diagnosis of human diseases. The protection and improved shelf life provided by the shell could increase their potential in this field. In addition, the shell can act as a scaffold for chemical and biological property modifications. The team was thus able to produce magnetic yeast cells by the inclusion of iron oxide nanoparticles in the shell.

Author: Ruikang Tang, Zhejiang University, Hangzhou (China), http://www.chem.zju.edu.cn/en/teacher.asp?Num=192

Title: Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization

Angewandte Chemie International Edition, doi: 10.1002/anie.200704718

Ruikang Tang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.zju.edu.cn/en/teacher.asp?Num=192

Further reports about: phosphate yeast

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>