Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A diaphanous control during embryo formation

09.04.2008
Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

A gene called Diaphanous (or Dia) has just been uncovered as a major regulator during embryo formation. The research now published in the journal Development shows how Dia mutations in fruit flies embryos result in a serious of defects during morphogenesis (process by which cells differentiate into tissues and structures), including loss of adhesion, abnormal movements and even migration of cells from one tissue to another.

The discovery contributes to a better understanding of how tissue and organ formation is regulated and, consequently, to, one day, be able to intervene therapeutically. Furthermore, the loss of adhesion and abnormal mobility that occurs when Dia is mutated is very similar to what happens during cancer metastases formation, suggesting that this gene might also have a role in cancer.

During morphogenesis the cells change shape and migrate to new positions in order to achieve the right body plan. The cytoskeleton and the adherent junctions are two major structures involved in these processes: while the first is the cell internal scaffolding - a dynamic structure that helps maintaining the cell shape while also mediating its movements - adherent junctions are connections between cell membranes and cytoskeleton elements that maintain adjacent cells together. During morphogenesis, both structures are tightly coordinated in order to achieve the right balance between stability within the tissue and capability to respond to the environmental through shape and motility variations, but exactly how this occurs and which genes/proteins are involved is still far from being understood.

Diaphanous-related formins (DRF) are a class of regulators known to affect events during morphogenesis although their exact mechanism of action has remained unclear due to several experimental problems. In fact, not only most species have more than one DRF with overlapping functions creating difficulties when trying to find “which one does what”, but also DRF mutations tend to kill the mutated cells making experiments unfeasible.

But in the research now published Catarina Homem, a Portuguese PHD student, and supervisor Mark Peifer at the University of North Carolina at Chapel Hill, USA manage to overcome these problems by working in fruit flies (Drosophila) – which have just one DRF – Dia – and by using a temperature-sensitive Dia mutation , which allowed the researchers to reduce the gene expression only after the cells were fully formed – so not compromising their viability - but before their destiny in the tissues was decided. Together with this mutant Homem and Peifer also used Drosophilas with a Dia constitutive mutation – so where the gene is activated all the time instead of the normal on-off switch in accordance with necessity – as well as offspring obtained from crossing the different mutant Drosophila.

By analysing and comparing embryonic tissue formation in the various fruit flies Homem and Peifer were able to discover that Dia stabilises adherent junctions and controls cell movements during morphogenesis, and that this was mediated by affecting the quantity and activation levels of two major proteins involved in cytoskeleton movement and cell-cell adhesion - actin and myosin. Actin and myosin are better known for their role generating muscles’ contractions but actin – which is an integrant part of the cytoskeleton – also reacts with myosin to create the cell membrane tensions that allow the cell to move. Dia mutations were shown to result in several morphogenic defects, including loss of cell adhesion, abnormal motility and even invasion of neighboring tissues.

In conclusion, Homem and Peifer ‘s work reveals Dia as a major regulator molecule for cell adhesion and cytoskeleton function, acting directly on actin and myosin to regulate cell shape, adhesion and movement. Their study is particularly interesting because it uses several mutations and tests them in a variety of tissues creating a full image of Dia’s role in morphogenesis.

Also interesting is the observation that Dia mutations can transform adherent immobile cells into mobile invasive cell that spread into other tissues, a process known to occur when cancer metastases are formed and when cells from the original tumour gain abnormal mobility and migrate spreading the disease to remote locations. It will be interesting now to investigate if it is in fact possible to associate Dia mutations with cancer, something that Peifer’s laboratory – with a strong interest in cancer research – will no doubt do soon.

Catarina Amorim | alfa
Further information:
http://www.ncbi.nlm.nih.gov/pubmed/18256194?dopt=Abstract

Further reports about: DRF Dia Embryo Homem Mutation Myosin Peifer adherent adhesion cytoskeleton formation morphogenesis

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>