Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for ’visualizing’ proteins

20.06.2002


A newly established national biomedical center at Cornell University is reporting its first major advance: a new way of measuring, or "visualizing," proteins. The new technique will hasten the transformation of the human genome project’s blueprints of life into a comprehensive view of the biochemical and physiological circuitry that interconnect to form entire organisms.

The technique, which determines the structure of a protein by measuring the distances between atoms in the molecule at greater separations than previously possible, is an important development, says Jack Freed, professor of chemistry and chemical biology at Cornell, who is director of the National Biomedical Center for Advanced ESR Technology (ACERT), established at Cornell last year by the National Institutes of Health. "This is in the spirit of seeing the whole forest of the protein, whereas before we have been seeing the trees one after another," says Freed.

Freed and his collaborators, Hassane Mchaourab, professor of molecular physiology and biophysics at the Vanderbilt University School of Medicine, and Peter Borbat, associate director of ACERT, report on the new method for protein structure determination in JACS , the Journal of the American Chemical Society (May 22, 2002).



"This technique is potentially very powerful for the investigation of larger protein assemblies and membrane proteins," says Yeon-Kyun Shin, associate professor of biophysics at Iowa State University and a major user of the ACERT facility.

The new method for seeing the structure of the protein uses ESR (electron spin resonance), a technology for studying the bonds, structures, and molecular mechanisms of chemical and biological materials, such as membranes and proteins. Basically, the technique elucidates how molecules move, react and interact with one another. The protein studied for the JACS report, T4 Lysozyme, is one of the proteins of a bacteriophage, or virus, that is parasitic within a bacterium. The protein degrades the bacterial cell wall to enable the virus’s exit.

Previously, Freed’s group pioneered technology that enables ESR methods to unravel the complex dynamics of biosystems such as proteins and membranes. The research group has adapted this technology, dubbing it DQC (for double quantum coherence), to deliver pulses of microwave radiation in appropriate sequences in order to measure the distances between two spin labels. These are molecular subunits, each containing an unpaired electron, inserted at precise sites in the protein. DQC-ESR "interrogates" the spin labels for their weak interaction, the magnitude of which depends on the distance between them. By measuring such distances, the overall structure of the protein can be revealed.

Until now, protein structure has been determined primarily by two widely used methods: X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. The X-ray method, however, requires crystallization of the protein, and as Freed explains, a protein is not just a single crystal or a frozen object but is in constant flexing and tumbling motion. NMR visualizes the molecule in its normal environment and is based on measuring many small distances between adjacent, or nearly adjacent, atoms, like going from tree to tree. The new technology reported in the JACS paper, which needs only very small amounts of protein, gives researchers a comprehensive view of a the molecule, "like being able to see the topology of the entire forest," says Mchaourab.

He notes that 30 percent of the proteins encoded by a genome and 50 percent of pharmaceutically important receptors are membrane-embedded proteins "that are not so easily studied by the two main structural techniques, X-ray crystallography and NMR."

In a larger context, the new technology will aid "the rush" to transform genome sequencing projects’ blueprints into broad views of protein function, says Mchaourab. "Central to this endeavor is structural biology that will transform these one-dimensional strings of DNA sequences into three-dimensional visual frameworks of how catalysis, ion conduction and energy transduction are carried out by proteins," he says. Structural biology and structural genomics are aimed at creating a catalog of the entire complement of unique proteins encoded by a genome.

Notes Mchaourab: "The ability of ACERT to transform this technology into a routine laboratory procedure will allow a whole new set of protein assays [testing and analysis] to emerge."

David Brand | EurekAlert!
Further information:
http://www.acert.cornell.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>