Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for ’visualizing’ proteins

20.06.2002


A newly established national biomedical center at Cornell University is reporting its first major advance: a new way of measuring, or "visualizing," proteins. The new technique will hasten the transformation of the human genome project’s blueprints of life into a comprehensive view of the biochemical and physiological circuitry that interconnect to form entire organisms.

The technique, which determines the structure of a protein by measuring the distances between atoms in the molecule at greater separations than previously possible, is an important development, says Jack Freed, professor of chemistry and chemical biology at Cornell, who is director of the National Biomedical Center for Advanced ESR Technology (ACERT), established at Cornell last year by the National Institutes of Health. "This is in the spirit of seeing the whole forest of the protein, whereas before we have been seeing the trees one after another," says Freed.

Freed and his collaborators, Hassane Mchaourab, professor of molecular physiology and biophysics at the Vanderbilt University School of Medicine, and Peter Borbat, associate director of ACERT, report on the new method for protein structure determination in JACS , the Journal of the American Chemical Society (May 22, 2002).



"This technique is potentially very powerful for the investigation of larger protein assemblies and membrane proteins," says Yeon-Kyun Shin, associate professor of biophysics at Iowa State University and a major user of the ACERT facility.

The new method for seeing the structure of the protein uses ESR (electron spin resonance), a technology for studying the bonds, structures, and molecular mechanisms of chemical and biological materials, such as membranes and proteins. Basically, the technique elucidates how molecules move, react and interact with one another. The protein studied for the JACS report, T4 Lysozyme, is one of the proteins of a bacteriophage, or virus, that is parasitic within a bacterium. The protein degrades the bacterial cell wall to enable the virus’s exit.

Previously, Freed’s group pioneered technology that enables ESR methods to unravel the complex dynamics of biosystems such as proteins and membranes. The research group has adapted this technology, dubbing it DQC (for double quantum coherence), to deliver pulses of microwave radiation in appropriate sequences in order to measure the distances between two spin labels. These are molecular subunits, each containing an unpaired electron, inserted at precise sites in the protein. DQC-ESR "interrogates" the spin labels for their weak interaction, the magnitude of which depends on the distance between them. By measuring such distances, the overall structure of the protein can be revealed.

Until now, protein structure has been determined primarily by two widely used methods: X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. The X-ray method, however, requires crystallization of the protein, and as Freed explains, a protein is not just a single crystal or a frozen object but is in constant flexing and tumbling motion. NMR visualizes the molecule in its normal environment and is based on measuring many small distances between adjacent, or nearly adjacent, atoms, like going from tree to tree. The new technology reported in the JACS paper, which needs only very small amounts of protein, gives researchers a comprehensive view of a the molecule, "like being able to see the topology of the entire forest," says Mchaourab.

He notes that 30 percent of the proteins encoded by a genome and 50 percent of pharmaceutically important receptors are membrane-embedded proteins "that are not so easily studied by the two main structural techniques, X-ray crystallography and NMR."

In a larger context, the new technology will aid "the rush" to transform genome sequencing projects’ blueprints into broad views of protein function, says Mchaourab. "Central to this endeavor is structural biology that will transform these one-dimensional strings of DNA sequences into three-dimensional visual frameworks of how catalysis, ion conduction and energy transduction are carried out by proteins," he says. Structural biology and structural genomics are aimed at creating a catalog of the entire complement of unique proteins encoded by a genome.

Notes Mchaourab: "The ability of ACERT to transform this technology into a routine laboratory procedure will allow a whole new set of protein assays [testing and analysis] to emerge."

David Brand | EurekAlert!
Further information:
http://www.acert.cornell.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>