Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Exciting new approach" for identifying microRNAs

09.04.2008
PhD student at MDC develops new computer program

MicroRNAs (miRNAs) are genes which produce important elements that regulate a wide variety of processes in plants, animals and humans. MiRNAs are considered to be promising diagnostic and therapeutic candidates for the treatment of human diseases. Worldwide, scientists are seeking to develop methods to detect which miRNAs are active in tissue samples or to identify novel miRNA genes.

To date, researchers have identified more than 600 human miRNAs, each of which regulates the activity of several hundred proteins, the building and operating materials of life. Marc Friedländer, a PhD student in the laboratory of Nikolaus Rajewsky at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, has now developed a software package named miRDeep. Using it, researchers can detect not only which miRNAs are active in a tissue sample, but can also discover previously unknown miRNAs. MiRDeep is based on the analysis of modern high-throughput sequencing technologies and modeling the activity of a key enzyme in the miRNA pathway.

The paper, written in collaboration with Wei Chen of the Max Planck Institute (MPI) for Molecular Genetics, Berlin, has been published in Nature Biotechnology* online (Vol. 26, No. 4, pp. 407 - 415, 008). It also reports more than 250 novel or unannotated miRNA genes, 15 of these are human, which Friedländer and his colleagues were able to identify.

... more about:
»Molecular »RNA »Rajewsky »miRNA »produce »proteins

RNA is an abbreviation for ribonucleic acid. It is a chemical relative of DNA and functions as carrier of genetic information, which the cell needs to produce proteins. Besides this messenger RNA there are also miRNAs, small RNA fragments, which bind to certain regions of messenger RNA and thus block the production of proteins. MiRNA genes thus regulate which proteins the body generates.

Researchers want to utilize this process. "For instance, cancer researchers compare cancer cells with healthy cells to find out which miRNAs might play a role in the development of cancer," Rajewsky said, explaining the significance of miRNAs for basic medical research. "However, many known, but also still unknown miRNAs can only be found in small numbers in cells and are thus overlooked using traditional methods," he added. With novel "deep sequencing" methods, researchers can detect even these miRNAs. Using these revolutionary high-throughput sequencing technologies, genetic material can be decoded more rapidly and at lower cost.

Free access for researchers
"Until now," Rajewsky explained, "the problem also involved analyzing the immense amount of data generated by deep sequencing. Such a machine can easily decode 100 million letters of DNA in 3.5 days. Moreover, cells produce many other RNAs, not only miRNAs." Marc Friedländer developed the computer program "miRDeep".

Using this program, researchers can discover signatures in the sequencing data which are generated in the production of miRNAs in the cell. MiRDeep searches the data for these traces and then computes the probability with which a potential precursor-miRNA will produce a real miRNA. MiRDeep can be downloaded as software package from the website of the Rajewsky research group.

"Due to the good collaboration of bioinformaticians and lab biologists, we have succeeded in testing miRDeep in practice," Rajewsky said, describing the work of his research team. MDC researchers tested the new program by sequencing even small RNAs of human cancer cells and blood cells in the dog and analyzing these with miRDeep. They detected most of the already known miRNAs, but also 230 miRNAs that were previously unknown.

Various new miRNA genes could then also be validated by the researchers independently in the lab. "We started very early with the analysis of deep sequencing data and were thus able to gain experience, which is necessary considering the complexity and magnitude of the data." He summed up by saying, "Generally, until now there have been very few published methods for analyzing this data. Right now we are just at the beginning of this exciting research."

*miRDeep: Discovering miRNAs from deep sequencing data

Marc R. Friedländer1, Wei Chen2, Catherine Adamidi1 , Jonas Maaskola1, Ralf Einspanier3, Signe Knespel1, and Nikolaus Rajewsky1,*

1 Max Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
2 Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
3 Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany

doi:10.1038/nbt1394

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en/news

Barbara Bachtler, | idw
Further information:
http://en.wikipedia.org/wiki/DNA_sequencing
http://en.wikipedia.org/wiki/RNA_interference
http://www.mdc-berlin.de/en/research/research_teams/systems_biology_of_gene_regulatory_elements/index.html

Further reports about: Molecular RNA Rajewsky miRNA produce proteins

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>