Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"Exciting new approach" for identifying microRNAs

PhD student at MDC develops new computer program

MicroRNAs (miRNAs) are genes which produce important elements that regulate a wide variety of processes in plants, animals and humans. MiRNAs are considered to be promising diagnostic and therapeutic candidates for the treatment of human diseases. Worldwide, scientists are seeking to develop methods to detect which miRNAs are active in tissue samples or to identify novel miRNA genes.

To date, researchers have identified more than 600 human miRNAs, each of which regulates the activity of several hundred proteins, the building and operating materials of life. Marc Friedländer, a PhD student in the laboratory of Nikolaus Rajewsky at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, has now developed a software package named miRDeep. Using it, researchers can detect not only which miRNAs are active in a tissue sample, but can also discover previously unknown miRNAs. MiRDeep is based on the analysis of modern high-throughput sequencing technologies and modeling the activity of a key enzyme in the miRNA pathway.

The paper, written in collaboration with Wei Chen of the Max Planck Institute (MPI) for Molecular Genetics, Berlin, has been published in Nature Biotechnology* online (Vol. 26, No. 4, pp. 407 - 415, 008). It also reports more than 250 novel or unannotated miRNA genes, 15 of these are human, which Friedländer and his colleagues were able to identify.

... more about:
»Molecular »RNA »Rajewsky »miRNA »produce »proteins

RNA is an abbreviation for ribonucleic acid. It is a chemical relative of DNA and functions as carrier of genetic information, which the cell needs to produce proteins. Besides this messenger RNA there are also miRNAs, small RNA fragments, which bind to certain regions of messenger RNA and thus block the production of proteins. MiRNA genes thus regulate which proteins the body generates.

Researchers want to utilize this process. "For instance, cancer researchers compare cancer cells with healthy cells to find out which miRNAs might play a role in the development of cancer," Rajewsky said, explaining the significance of miRNAs for basic medical research. "However, many known, but also still unknown miRNAs can only be found in small numbers in cells and are thus overlooked using traditional methods," he added. With novel "deep sequencing" methods, researchers can detect even these miRNAs. Using these revolutionary high-throughput sequencing technologies, genetic material can be decoded more rapidly and at lower cost.

Free access for researchers
"Until now," Rajewsky explained, "the problem also involved analyzing the immense amount of data generated by deep sequencing. Such a machine can easily decode 100 million letters of DNA in 3.5 days. Moreover, cells produce many other RNAs, not only miRNAs." Marc Friedländer developed the computer program "miRDeep".

Using this program, researchers can discover signatures in the sequencing data which are generated in the production of miRNAs in the cell. MiRDeep searches the data for these traces and then computes the probability with which a potential precursor-miRNA will produce a real miRNA. MiRDeep can be downloaded as software package from the website of the Rajewsky research group.

"Due to the good collaboration of bioinformaticians and lab biologists, we have succeeded in testing miRDeep in practice," Rajewsky said, describing the work of his research team. MDC researchers tested the new program by sequencing even small RNAs of human cancer cells and blood cells in the dog and analyzing these with miRDeep. They detected most of the already known miRNAs, but also 230 miRNAs that were previously unknown.

Various new miRNA genes could then also be validated by the researchers independently in the lab. "We started very early with the analysis of deep sequencing data and were thus able to gain experience, which is necessary considering the complexity and magnitude of the data." He summed up by saying, "Generally, until now there have been very few published methods for analyzing this data. Right now we are just at the beginning of this exciting research."

*miRDeep: Discovering miRNAs from deep sequencing data

Marc R. Friedländer1, Wei Chen2, Catherine Adamidi1 , Jonas Maaskola1, Ralf Einspanier3, Signe Knespel1, and Nikolaus Rajewsky1,*

1 Max Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
2 Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
3 Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany


Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler, | idw
Further information:

Further reports about: Molecular RNA Rajewsky miRNA produce proteins

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>