Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear scientists eye future landfall on a second 'island of stability'

08.04.2008
Modern-day scientific Magellans and Columbus’s, exploring the uncharted seas at the fringes of the Periodic Table of the Elements, have landed on one long-sought island — the fabled Island of Stability, home of a new genre of superheavy chemical elements sought for more than three decades.

In a presentation at the 235th national meeting of the American Chemical Society, one of the captains of these expeditions into the unknown, described how researchers now are eying other islands on the more-distant fringes of the periodic table.

“Now that it has been shown that the ‘island of stability’ of superheavy elements exists, it would be interesting to predict the position of other islands,” said Yuri Oganessian, Ph.D., of Russia’s Joint Institute for Nuclear Research in Dubna. He is the scientific leader at the Institute’s Flerov Laboratory of Nuclear Reactions.

The discovery of superheavy elements at the beginning of this century by Oganessian’s group also confirmed the existence of the Island of Stability, a theoretical region of the periodic table, which distinguished chemist and Nobel laureate Glenn Seaborg considered as one of the keystones of fundamental science. The “sea-and-island” analogy arose because these superheavy elements lie in an area of the periodic table where other elements are unstable, disappearing in much less than the blink of an eye. The superheavies, in contrast, are somewhat more stable than their shorter-lived cousins.

... more about:
»Nuclear »Oganessian »periodic »superheavy

Oganessian’s group has teamed with California’s Lawrence Livermore Laboratory to synthesize five new elements (113, 114, 115, 116, and 118) over the past six years. Such superheavy elements do not exist in nature and can only be created by smashing lighter elements together at tremendous speeds obtained by means of highly sophisticated particle accelerators.

The periodic table, a fixture on the walls of science classrooms around the world, lists all the chemical elements. These materials make up everything in the universe, from human beings, medicines, and food to stars and swirling clouds of gas a billion light-years across the universe. Click here (http://pubs.acs.org/cen/80th/elements.html) to view the ACS’s interactive Periodic Table of the Elements.

The first 92 elements on the table exist naturally. The rest – which now extend to element 118 – were created by scientists in atomic nuclei collision with the aid of particle accelerators. Aptly named, these machines accelerate atoms to nearly 1/10 the speed of light and smash them into other so-called “target” atoms. Sometimes the nuclei of two colliding atoms fuse and a new element is formed.

Oganessian and his colleagues are currently using Dubna’s particle accelerator in an attempt to synthesize yet another superheavy element, No. 120, to add more territory to the island of stability. Strikingly, Oganessian believes that another, more distant, island of stability lies further out in that sea at the periodic table’s fringes.

“The next island is located very far from the first one,” said Oganessian. How far away might that next island be" In terms of numbers on the periodic table, it could lie around atomic number 164, as some theorists predicted, certainly a long way from where researchers are exploring today in hopes of discovering element 120.

But reaching the shores of the next island of stability will require a more deep understanding of the processes of element formation and a newer, more sophisticated particle accelerator, Oganessian believes.

In order to study the physical and chemical properties of the current and yet-to-be discovered superheavy elements, the researchers will need to produce many more nuclides than they have been able to do so far, according to Oganessian.

“For this purpose, we need to increase the beam intensity, which will demand a new accelerator,” Oganessian said.

It is difficult to anticipate what practical uses might come out of the search for new superheavy elements. For now, the focus is on discovery, not application. However, some previously synthesized elements have yielded tremendous benefits for people. One example, element 95 – Americium – discovered in 1944, is used in smoke detectors and in medical and industrial radiography.

Oganessian declined to speculate on potential uses of future superheavy elements, but noted that it will take revolutionary new technology to produce large enough amounts of these elements to make them of practical use. Although he said it is hard for him to imagine such a technology, he expressed faith in the abilities of future researchers.

“I don’t want to fantasize, but if they can devise a method for the production of superheavy elements in large quantities, I am sure they can find some worthy application for these elements,” Oganessian said.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Nuclear Oganessian periodic superheavy

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>