Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variants of USF1 are associated with the increased risk for cardiovascular disease

08.04.2008
USF1 gene seems to have an important role in the etiology of cardiovascular diseases, suggests the Finnish study. This gene, which was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease, encodes a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function.

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies.

Master of Science, Kati Kristiansson, from the research group of Professor Leena Peltonen at the National Public Health Institute and the University of Helsinki, Finland, has investigated variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD.

USF1 gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene encodes a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function.

“We examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts, and our data suggested that USF1 contributes to these CVD risk factors at the population level”, Kristiansson says. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual.

To address the question if carriership of this risk allele has a direct impact on the atherosclerotic lesions of the coronary arteries and abdominal aorta, Kristansson used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. It turned out that USF1 variation significantly associated with the size of the areas of several types of arterial wall lesions, especially with calcification of the arteries.

Finally, when Kristiansson tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD at the population level, she found out that the risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies.

“In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. These studies, which uncover the details of the disease etiology, provide tools for the prevention and treatment cardiovascular disease”, Kristiansson states.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: CVD Cardiovascular Kristiansson Lipid USF1 associated etiology risk factor

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>