Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA: reconstruction of the biological history of Aldaieta necropolis

08.04.2008
A research team from the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the Leioa campus of the University of the Basque Country (UPV/EHU), and led by Ms Concepción de la Rúa, has reconstructed the history of the evolution of human population and answered questions about history, using DNA extracted from skeleton remains.

Knowing the history of past populations and answering unresolved questions about them is highly interesting, more so when the information is obtained from the extraction of genetic material from historical remains. An example is the necropolis at Aldaieta (Araba) where some of these mysteries about these peoples have been answered – thanks to the study of their DNA.

Aldaieta brings together certain important features which make this site a prime archaeological and historical record and its conservation an important task of restoration and study. In this vein, the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), has undertaken a study of DNA in the necropolis at Aldaieta (Araba).

The researchers at the UPV/EHU have been studying the genetic material of ancient remains, extracted both from bones and teeth, in order to interpret the biological and social meaning of this necropolis. The study of ancient DNA is a field in which laboratory work is enormous for a number of reasons. On the one hand, in comparison with modern or current DNA, that extracted from the bones and teeth is quite degraded and is in very small quantities. As a consequence, the risk of contamination is high. This is why, at all times the results obtained have to be authenticate and it has to be demonstrated that they are not due to contamination or handling/manipulation, but have genuinely been obtained from the samples.

... more about:
»Aldaieta »DNA »Genetic »mitochondrial »necropolis »remains

The research work began with the extraction and subsequent analysis of DNA from the ancient remains (normally by the sequencing of mitochondrial DNA, a molecule inherited maternally) of each individual and in duplicate. Moreover, a third copy of the sample from each individual was sent to another laboratory and. finally, they compare all of them in order to distinguish between what is endogenous from what is the result of handling. Obviously, the results obtained from the same sample/individual have to tally in all the analyses in order to be reliable.

Interpretation of the settlement at Aldaieta

Despite the problems inherent working with ancient DNA, the methodology drawn up for the current work as well as the precautions and criteria of authentication undertaken have enabled reliable and verifiable results of the population buried at Aldaieta to be obtained.

Within the great homogeneity of the mitochondrial lines on the European continent, the genetic substrate of the population buried at Aldaieta falls within the variability of that expressed by current populations on the Cantabrian coast and Atlantic axis, thereby indicating the existence of genic flow between these human groups in ancient times.

Besides the characterisation of the mitochondrial genome, they have carried out the characterisation of the chromosome Y, using techniques focused on ancient DNA, an have shown the existence of family relationships within the necropolis, given that certain mitochondrial lines have a particular distribution, the grouping of individuals belonging to the same line having been discovered at nearby burial sites. Besides, there exists a significant differentiation gender wise, men having qualitatively and quantitatively more important funerary artefacts than women.

It is clear that the genetic analysis of skeleton remains, despite the labour-intensive work involved and the problem of authenticity of the results, has provided an essential contribution in the reconstruction of the biological history of human populations.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1690&hizk=I

Further reports about: Aldaieta DNA Genetic mitochondrial necropolis remains

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>