Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA: reconstruction of the biological history of Aldaieta necropolis

08.04.2008
A research team from the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the Leioa campus of the University of the Basque Country (UPV/EHU), and led by Ms Concepción de la Rúa, has reconstructed the history of the evolution of human population and answered questions about history, using DNA extracted from skeleton remains.

Knowing the history of past populations and answering unresolved questions about them is highly interesting, more so when the information is obtained from the extraction of genetic material from historical remains. An example is the necropolis at Aldaieta (Araba) where some of these mysteries about these peoples have been answered – thanks to the study of their DNA.

Aldaieta brings together certain important features which make this site a prime archaeological and historical record and its conservation an important task of restoration and study. In this vein, the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), has undertaken a study of DNA in the necropolis at Aldaieta (Araba).

The researchers at the UPV/EHU have been studying the genetic material of ancient remains, extracted both from bones and teeth, in order to interpret the biological and social meaning of this necropolis. The study of ancient DNA is a field in which laboratory work is enormous for a number of reasons. On the one hand, in comparison with modern or current DNA, that extracted from the bones and teeth is quite degraded and is in very small quantities. As a consequence, the risk of contamination is high. This is why, at all times the results obtained have to be authenticate and it has to be demonstrated that they are not due to contamination or handling/manipulation, but have genuinely been obtained from the samples.

... more about:
»Aldaieta »DNA »Genetic »mitochondrial »necropolis »remains

The research work began with the extraction and subsequent analysis of DNA from the ancient remains (normally by the sequencing of mitochondrial DNA, a molecule inherited maternally) of each individual and in duplicate. Moreover, a third copy of the sample from each individual was sent to another laboratory and. finally, they compare all of them in order to distinguish between what is endogenous from what is the result of handling. Obviously, the results obtained from the same sample/individual have to tally in all the analyses in order to be reliable.

Interpretation of the settlement at Aldaieta

Despite the problems inherent working with ancient DNA, the methodology drawn up for the current work as well as the precautions and criteria of authentication undertaken have enabled reliable and verifiable results of the population buried at Aldaieta to be obtained.

Within the great homogeneity of the mitochondrial lines on the European continent, the genetic substrate of the population buried at Aldaieta falls within the variability of that expressed by current populations on the Cantabrian coast and Atlantic axis, thereby indicating the existence of genic flow between these human groups in ancient times.

Besides the characterisation of the mitochondrial genome, they have carried out the characterisation of the chromosome Y, using techniques focused on ancient DNA, an have shown the existence of family relationships within the necropolis, given that certain mitochondrial lines have a particular distribution, the grouping of individuals belonging to the same line having been discovered at nearby burial sites. Besides, there exists a significant differentiation gender wise, men having qualitatively and quantitatively more important funerary artefacts than women.

It is clear that the genetic analysis of skeleton remains, despite the labour-intensive work involved and the problem of authenticity of the results, has provided an essential contribution in the reconstruction of the biological history of human populations.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1690&hizk=I

Further reports about: Aldaieta DNA Genetic mitochondrial necropolis remains

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>