Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unexpected way to cause leukaemia

08.04.2008
New mouse model grants insight into the genetic and molecular mechanisms underpinning acute myeloid leukaemia

Leukaemia – cancer of blood or bone marrow – is caused by mutations that allow defective blood cells to accumulate and displace healthy blood. To devise effective therapies it is crucial to know which mutations cause leukaemia and which cell type gives rise to leukaemic cells.

Researchers from the European Molecular Biology Laboratory (EMBL) in Italy, the EMBL-European Bioinformatics Institute, UK, and the Universities of Harvard, USA, and Lund, Sweden, have now used genetic engineering to introduce a mutation found in human leukaemia patients into mice. In the current issue of Cancer Cell they report that the mutation causes leukaemia by triggering innate genetic programmes that allow white blood cells to proliferate uncontrollably. The findings have implications for the way leukaemia should be treated.

Blood is generated from a small number of multipotent stem cells that divide, differentiate and give rise to the many different cell types that make up the blood. At the same time they also maintain the pool of stem cells through a process called self-renewal. While differentiating, cells acquire specific properties and functions, but lose the capacity to self-renew in the way stem cells do. Mutations interfering with this process and promoting uncontrolled proliferation of certain blood cells can lead to leukaemia. Researchers of the group of Claus Nerlov at EMBL’s Mouse Biology Unit now prove that a mutation in a protein called C/EBPa causes acute myeloid leukaemia (AML), a type of leukaemia affecting one lineage of white blood cells, in mice.

... more about:
»Mutation »blood cells »cause »leukaemia »stem cells

“10 percent of all patients suffering from AML have this mutation, but we could never be sure if it causes the disease. By precisely reproducing the human mutation in the mouse we now proved a causative relation,” says Peggy Kirstetter, who carried out the research in Nerlov’s lab.

Instead of promoting uncontrolled proliferation of malignant blood stem cells, as often assumed as the cause of leukaemia, the mutation acts on already partially differentiated cells. It reprogrammes these cells to self-renew and to produce countless dysfunctional daughter cells, which displace the healthy blood cells, eventually leading to the inability to transport oxygen around in the body.

“This is the first time that non-stem cell myeloid leukaemia has been generated within a healthy blood system. The findings will have profound implications for our understanding of the development and treatment of leukaemias,” says Nerlov.

Scientists always thought that the mutation was the crucial step leading to leukaemia that should be targeted by drugs. Nerlov and colleagues identified a genetic programme activated in self-renewing leukemic cells, which is shared with similar leukaemias caused by other types of mutations. The findings suggest that the cellular changes that lead to self-renewal are mutation-independent. To develop drugs with a more general efficacy it may therefore be more efficient to target the molecules and pathways shared between different cancer stem cells.

Published in Cancer Cell on 8 April 2008.

For more information visit: http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Further reports about: Mutation blood cells cause leukaemia stem cells

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>