Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unexpected way to cause leukaemia

08.04.2008
New mouse model grants insight into the genetic and molecular mechanisms underpinning acute myeloid leukaemia

Leukaemia – cancer of blood or bone marrow – is caused by mutations that allow defective blood cells to accumulate and displace healthy blood. To devise effective therapies it is crucial to know which mutations cause leukaemia and which cell type gives rise to leukaemic cells.

Researchers from the European Molecular Biology Laboratory (EMBL) in Italy, the EMBL-European Bioinformatics Institute, UK, and the Universities of Harvard, USA, and Lund, Sweden, have now used genetic engineering to introduce a mutation found in human leukaemia patients into mice. In the current issue of Cancer Cell they report that the mutation causes leukaemia by triggering innate genetic programmes that allow white blood cells to proliferate uncontrollably. The findings have implications for the way leukaemia should be treated.

Blood is generated from a small number of multipotent stem cells that divide, differentiate and give rise to the many different cell types that make up the blood. At the same time they also maintain the pool of stem cells through a process called self-renewal. While differentiating, cells acquire specific properties and functions, but lose the capacity to self-renew in the way stem cells do. Mutations interfering with this process and promoting uncontrolled proliferation of certain blood cells can lead to leukaemia. Researchers of the group of Claus Nerlov at EMBL’s Mouse Biology Unit now prove that a mutation in a protein called C/EBPa causes acute myeloid leukaemia (AML), a type of leukaemia affecting one lineage of white blood cells, in mice.

... more about:
»Mutation »blood cells »cause »leukaemia »stem cells

“10 percent of all patients suffering from AML have this mutation, but we could never be sure if it causes the disease. By precisely reproducing the human mutation in the mouse we now proved a causative relation,” says Peggy Kirstetter, who carried out the research in Nerlov’s lab.

Instead of promoting uncontrolled proliferation of malignant blood stem cells, as often assumed as the cause of leukaemia, the mutation acts on already partially differentiated cells. It reprogrammes these cells to self-renew and to produce countless dysfunctional daughter cells, which displace the healthy blood cells, eventually leading to the inability to transport oxygen around in the body.

“This is the first time that non-stem cell myeloid leukaemia has been generated within a healthy blood system. The findings will have profound implications for our understanding of the development and treatment of leukaemias,” says Nerlov.

Scientists always thought that the mutation was the crucial step leading to leukaemia that should be targeted by drugs. Nerlov and colleagues identified a genetic programme activated in self-renewing leukemic cells, which is shared with similar leukaemias caused by other types of mutations. The findings suggest that the cellular changes that lead to self-renewal are mutation-independent. To develop drugs with a more general efficacy it may therefore be more efficient to target the molecules and pathways shared between different cancer stem cells.

Published in Cancer Cell on 8 April 2008.

For more information visit: http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Further reports about: Mutation blood cells cause leukaemia stem cells

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>