Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unexpected way to cause leukaemia

08.04.2008
New mouse model grants insight into the genetic and molecular mechanisms underpinning acute myeloid leukaemia

Leukaemia – cancer of blood or bone marrow – is caused by mutations that allow defective blood cells to accumulate and displace healthy blood. To devise effective therapies it is crucial to know which mutations cause leukaemia and which cell type gives rise to leukaemic cells.

Researchers from the European Molecular Biology Laboratory (EMBL) in Italy, the EMBL-European Bioinformatics Institute, UK, and the Universities of Harvard, USA, and Lund, Sweden, have now used genetic engineering to introduce a mutation found in human leukaemia patients into mice. In the current issue of Cancer Cell they report that the mutation causes leukaemia by triggering innate genetic programmes that allow white blood cells to proliferate uncontrollably. The findings have implications for the way leukaemia should be treated.

Blood is generated from a small number of multipotent stem cells that divide, differentiate and give rise to the many different cell types that make up the blood. At the same time they also maintain the pool of stem cells through a process called self-renewal. While differentiating, cells acquire specific properties and functions, but lose the capacity to self-renew in the way stem cells do. Mutations interfering with this process and promoting uncontrolled proliferation of certain blood cells can lead to leukaemia. Researchers of the group of Claus Nerlov at EMBL’s Mouse Biology Unit now prove that a mutation in a protein called C/EBPa causes acute myeloid leukaemia (AML), a type of leukaemia affecting one lineage of white blood cells, in mice.

... more about:
»Mutation »blood cells »cause »leukaemia »stem cells

“10 percent of all patients suffering from AML have this mutation, but we could never be sure if it causes the disease. By precisely reproducing the human mutation in the mouse we now proved a causative relation,” says Peggy Kirstetter, who carried out the research in Nerlov’s lab.

Instead of promoting uncontrolled proliferation of malignant blood stem cells, as often assumed as the cause of leukaemia, the mutation acts on already partially differentiated cells. It reprogrammes these cells to self-renew and to produce countless dysfunctional daughter cells, which displace the healthy blood cells, eventually leading to the inability to transport oxygen around in the body.

“This is the first time that non-stem cell myeloid leukaemia has been generated within a healthy blood system. The findings will have profound implications for our understanding of the development and treatment of leukaemias,” says Nerlov.

Scientists always thought that the mutation was the crucial step leading to leukaemia that should be targeted by drugs. Nerlov and colleagues identified a genetic programme activated in self-renewing leukemic cells, which is shared with similar leukaemias caused by other types of mutations. The findings suggest that the cellular changes that lead to self-renewal are mutation-independent. To develop drugs with a more general efficacy it may therefore be more efficient to target the molecules and pathways shared between different cancer stem cells.

Published in Cancer Cell on 8 April 2008.

For more information visit: http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2008/07apr08/index.html

Further reports about: Mutation blood cells cause leukaemia stem cells

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>