Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RING Finger Protein 5 May Guide Treatment for Muscle Disease in Older Adults

07.04.2008
Researchers at the Burnham Institute for Medical Research (Burnham) have discovered a new player in the development of a disorder called Sporadic Inclusion Body Myositis (sIBM).

sIBM is a muscle disease that affects predominantly older men, causing muscles to gradually weaken and waste away. The number of people living with sIBM is unknown, but it is the most common muscle disease among those over the age of 50, and due to its unfamiliarity, it is probably underdiagnosed. This discovery provides a potential avenue for future diagnostic and therapeutic opportunities for this disease.

In muscles, proteins are continuously made and broken down by the endoplasmic reticulum (ER), a “protein factory” in the cell. To assure that proteins produced pass quality control, a set of ER-based inspectors identify and remove those proteins that are not properly folded. Ubiquitin ligase RNF5 (or RING Finger Protein 5) acts much like one of these quality-control inspectors at the end of the assembly line by tagging defective protein products so that they can be recycled. Burnham scientists have found that RNF5 plays a key role in the progression of IBM. While the causes of sIBM or how it progresses are still mostly unknown, and there is no cure or standard treatment, this finding offers a new understanding for the mechanism underlying development of sIBM and points to possible use of new markers for diagnosis and mouse models to test for novel therapeutics. The results of this study appeared in PLoS ONE on February 13.

The Burnham research team was led by Ze’ev Ronai, Ph.D., and included Agnes Delaunay, PhD., and P. Lorenzo Puri, M.D., Ph.D., with Diane Shelton, D.V.M. Ph.D of UCSD and international collaborators from Japan and Italy. Dr. Ronai had previously shown that RNF5 is important for muscle maintenance in the worm model C. elegans; now the team discovered that RNF5 is up-regulated in biopsies from sIBM patients.

... more about:
»Muscle »Protein »RNF5 »Ronai »Stress »sIBM

Following this discovery, the team developed three mouse models: one knockout model in which the RNF5 gene was missing, and two in which cells could be triggered to overproduce RNF5, with expression either limited to skeletal muscle, -or within muscle and a variety of other organs.

A comparison of normal and knockout mice exposed to muscle-damaging toxin showed slower healing in the knockouts compared with the normal mice, demonstrating the importance of RNF5 in muscle repair.

Pathologic changes within muscles of the transgenic models with RNF5 overexpression were similar to those found in muscle biopsies from patients with sIBM. Overproduction of RNF5 caused a rapid and significant muscle degeneration, weight loss and muscle weakness. Followed by extensive muscle regeneration. Similar to what is often seen in patients with IBM, muscle specimens from RNF5 overexpressing animals revealed the presence of structures known as rimmed vacuoles and congophilic inclusions, hallmarks of this disease.

The researchers also found increased levels of markers characteristic of ER stress, a phenomenon that has been linked with a variety of human diseases, including sIBM. It is believed that ER stress is a response to misfolded-protein buildup; sensing the backlog, the ER recruits helpers through the Unfolded Protein Response (UPR)—chaperonins that increase the export of misfolded proteins to enable their breakdown and recycling. But, with prolonged stress, the UPR eventually fails to handle the overload, resulting in the accumulation of misfolded proteins in the cytoplasmic vacuoles, structures within the cell cytoplasm which are characteristic of sIBM patients.

Whether RNF5 is the primary cause for sIBM, or an important contributor in the development of this muscle disorder is yet to be determined. Dr. Ronai, lead author of the study, says the link established between ER stress, RNF5 and sIBM strengthen one theory stating that ER stress is causative for the disease and will now allow further study of the mechanisms underlying this disabling and all too common muscle disease.

“We now have a great mouse model that can be used to screen for drugs that might alleviate symptoms of sIBM,” says Dr. Ronai. But questions about what may interact with RNF5 in the cell to cause the symptoms of sIBM, he explains, still need to be addressed. “We know the substrates for this ubiquitin ligase in C. elegans, but not yet in human muscle.”

This research is supported by a grant from the National Cancer Institute of the National Institutes of Health.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research uses an entrepreneurial, collaborative approach to medical research to reveal the fundamental molecular causes of disease and devise the innovative therapies of tomorrow. The Institute is organized into five research centers: a National Cancer Institute-designated Cancer Center; the Del E. Webb Center for Neurosciences, Aging and Stem Cell Research; an Infectious and Inflammatory Disease Research Center; a Diabetes and Obesity Research Center; and the Sanford Children’s Health Research Center. Thanks to the quality of its faculty members, Burnham ranks among the top 25 organizations worldwide (according to the Institute for Scientific Information) for its research impact and among the top four research institutes nationally for NIH grant funding. Burnham is a nonprofit, public benefit corporation headquartered in La Jolla, California, with campuses in Orlando, Florida and Santa Barbara, California.

Andrea Moser | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Muscle Protein RNF5 Ronai Stress sIBM

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>