Researchers identify genes key to hormone production in plants

Dr. Jose Alonso, assistant professor of genetics, and a team of geneticists and plant biologists from NC State, Germany and the Czech Republic conducted the research. Their findings are published in the April 4 edition of the journal Cell.

Plant growth and development are regulated by a small number of hormones, which plants combine in various ways so that they can adapt to and thrive in changing environmental conditions. Auxin and ethylene are two of the most important of these growth-regulating hormones.

Scientists had previously established that plants respond differently to ethylene depending upon the type of plant tissue it is applied to, the developmental stage of the plant, and the surrounding environmental conditions. They also knew that the presence of auxin, another key growth-regulator, often served as a “trigger” for a plant to produce more ethylene, but were unsure of the ways in which auxin was synthesized.

“Auxin controls almost every process in a plant,” Alonso says, “and so it’s very important to understand how and why auxin is produced within the plant.”

In order to find out more about how auxin production is triggered, the NC State team identified a mutant strain of Arabidopsis – or mustard weed – that had a root system insensitive to the growth inhibitory effect of ethylene.

When the team looked at the genome of this mutant strain of mustard weed, they discovered that its lack of response to ethylene was due to the changes in a gene that they named TAA1. This gene produces a protein that is necessary for auxin synthesis. In a normal plant, the TAA1 gene recognizes the presence of ethylene as its signal to make proteins that in turn synthesize auxin, which controls growth.

The researchers found that if the TAA1 gene and two other related genes were “knocked out” or inactive, the plant had 50 percent less auxin than normal.

Their findings are the first to definitively establish a relationship between a particular family of genes, tissue-specific ethylene response, and auxin production in plants.

“If we want to do intelligent manipulation of plants, to breed them so that they ripen at a certain rate, or so that they’re well-adapted to particular environments, then we need to understand more about the ways that these hormones interact or ‘talk’ to each other,” Alonso says. “This research gives us concrete evidence for at least one way in which this happens.”

Media Contact

Tracey Peake EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors