Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A place in the sun

07.04.2008
Those spindly plants that desperately try to reach for a break in the canopy formed by larger plants all suffer from the same affliction: Shade avoidance syndrome or SAS. Now, the molecular details of SAS have been brought to light by researchers at the Salk Institute for Biological Studies.

To step out of their neighbors’ shade, plants switch on a natural chemical factory for the synthesis of the plant growth hormone auxin that lets a plant grow and ultimately stretch toward the sun, the Salk researchers report in an article published in the April 4, 2008 issue of the journal Cell. Understanding this response at a molecular level will allow scientists to naturally manipulate this response to increase yield in crops ranging from rice to wheat.

“Plants compete with each other for light, and shade avoidance syndrome has a big ecological and economic impact, especially in the high density plantings typical of modern agriculture,” says Howard Hughes Medical Institute investigator Joanne Chory, Ph.D., a professor in the Plant Biology, who led the study. “Suppressing the shade avoidance reaction in crops may allow us to increase biomass and seed yield.”

Plants can sense and respond to the presence of other plants in their neighborhood by the relative increase in incoming far-red light resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants.

... more about:
»Arabidopsis »Auxin »Chory »Seed »Sun »Tryptophan »avoidance »enzyme »pathway

To secure their place in the sun, plants direct their growth resources toward stem elongation and away from bulking up harvestable portions such as leaves and seeds. “If all else fails, the plants put out what I like to call a premature ‘desperation flower’ to produce at least a couple of seeds that might find better growing conditions during the next season,” explains Chory.

In an earlier study, Chory had confirmed the existence of a separate molecular pathway that plants use to adjust their growth and flowering time to shade. But the molecular events linking the detection of changes in light quality to changes in growth patterns were still poorly understood.

To identify genes that are involved in the shade avoidance syndrome, first author Yi Tao, a postdoctoral researcher in Chory’s lab, searched a collection of mutated Arabidopsis thaliana seedlings for plants that no longer responded to crowded growth conditions. Like many commercially grown crops, Arabidopsis — the lab rat of plant biologists — doesn’t tolerate shade well.

She identified a handful of genes that play a role in the shade response, one of which encoded an enzyme similar to alliinase, the enzyme that produces the characteristic flavor of onion, garlic and other members of the Alliaceae plant family. To predict the function of the newly identified enzyme, Chory turned to her Salk colleague Howard Hughes Medical Institute investigator Joseph P. Noel, Ph.D, director of the Jack H. Skirball Center for Chemical Biology and Proteomics.

Although Arabidopsis lacks garlic’s pungency, Noel could model the newly discovered enzyme’s structure based on the already-known, three-dimensional structure of alliinase. “The active site chemically resembled a nook and cranny likely to bind the amino acid tryptophan,” says Noel. “That’s when it became really exciting since we knew that plants can use tryptophan to synthesize auxin.”

After virtual biochemistry led the way, real-life biochemistry confirmed that the enzyme indeed uses tryptophan to catalyze the first reaction in a three-step auxin-synthesis pathway and the new enzyme became known as tryptophan aminotransferase of Arabidopsis, or TAA1 for short.

Despite the importance of auxin for plant growth and development, the details of how auxin is synthesized continue to puzzle plant biologists. Multiple biochemical pathways for the production of auxin have been identified or proposed but the specific function of each pathway and how they intersect is not known. Now, the role of at least one pathway has become clearer.

“When the major photoreceptor for shade avoidance detects neighbors, it triggers the TAA1 pathway resulting in a rapid increase in free auxin, which is transported to sites in the stem where it can participate in the growth response,” explains Chory. “Although we showed earlier that at least two additional biosynthetic routes to auxin exist in Arabidopsis, these other pathways are unable to compensate for the loss of the TAA1-dependent pathway.”

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Arabidopsis Auxin Chory Seed Sun Tryptophan avoidance enzyme pathway

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>