Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A place in the sun

07.04.2008
Those spindly plants that desperately try to reach for a break in the canopy formed by larger plants all suffer from the same affliction: Shade avoidance syndrome or SAS. Now, the molecular details of SAS have been brought to light by researchers at the Salk Institute for Biological Studies.

To step out of their neighbors’ shade, plants switch on a natural chemical factory for the synthesis of the plant growth hormone auxin that lets a plant grow and ultimately stretch toward the sun, the Salk researchers report in an article published in the April 4, 2008 issue of the journal Cell. Understanding this response at a molecular level will allow scientists to naturally manipulate this response to increase yield in crops ranging from rice to wheat.

“Plants compete with each other for light, and shade avoidance syndrome has a big ecological and economic impact, especially in the high density plantings typical of modern agriculture,” says Howard Hughes Medical Institute investigator Joanne Chory, Ph.D., a professor in the Plant Biology, who led the study. “Suppressing the shade avoidance reaction in crops may allow us to increase biomass and seed yield.”

Plants can sense and respond to the presence of other plants in their neighborhood by the relative increase in incoming far-red light resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants.

... more about:
»Arabidopsis »Auxin »Chory »Seed »Sun »Tryptophan »avoidance »enzyme »pathway

To secure their place in the sun, plants direct their growth resources toward stem elongation and away from bulking up harvestable portions such as leaves and seeds. “If all else fails, the plants put out what I like to call a premature ‘desperation flower’ to produce at least a couple of seeds that might find better growing conditions during the next season,” explains Chory.

In an earlier study, Chory had confirmed the existence of a separate molecular pathway that plants use to adjust their growth and flowering time to shade. But the molecular events linking the detection of changes in light quality to changes in growth patterns were still poorly understood.

To identify genes that are involved in the shade avoidance syndrome, first author Yi Tao, a postdoctoral researcher in Chory’s lab, searched a collection of mutated Arabidopsis thaliana seedlings for plants that no longer responded to crowded growth conditions. Like many commercially grown crops, Arabidopsis — the lab rat of plant biologists — doesn’t tolerate shade well.

She identified a handful of genes that play a role in the shade response, one of which encoded an enzyme similar to alliinase, the enzyme that produces the characteristic flavor of onion, garlic and other members of the Alliaceae plant family. To predict the function of the newly identified enzyme, Chory turned to her Salk colleague Howard Hughes Medical Institute investigator Joseph P. Noel, Ph.D, director of the Jack H. Skirball Center for Chemical Biology and Proteomics.

Although Arabidopsis lacks garlic’s pungency, Noel could model the newly discovered enzyme’s structure based on the already-known, three-dimensional structure of alliinase. “The active site chemically resembled a nook and cranny likely to bind the amino acid tryptophan,” says Noel. “That’s when it became really exciting since we knew that plants can use tryptophan to synthesize auxin.”

After virtual biochemistry led the way, real-life biochemistry confirmed that the enzyme indeed uses tryptophan to catalyze the first reaction in a three-step auxin-synthesis pathway and the new enzyme became known as tryptophan aminotransferase of Arabidopsis, or TAA1 for short.

Despite the importance of auxin for plant growth and development, the details of how auxin is synthesized continue to puzzle plant biologists. Multiple biochemical pathways for the production of auxin have been identified or proposed but the specific function of each pathway and how they intersect is not known. Now, the role of at least one pathway has become clearer.

“When the major photoreceptor for shade avoidance detects neighbors, it triggers the TAA1 pathway resulting in a rapid increase in free auxin, which is transported to sites in the stem where it can participate in the growth response,” explains Chory. “Although we showed earlier that at least two additional biosynthetic routes to auxin exist in Arabidopsis, these other pathways are unable to compensate for the loss of the TAA1-dependent pathway.”

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Arabidopsis Auxin Chory Seed Sun Tryptophan avoidance enzyme pathway

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>