Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

19.06.2002


Were the first macromolecules created on a primitive beach?



In order for life to emerge both peptides and nucleic acids must have appeared under "prebiotic" conditions. Despite numerous efforts, the formation of these macromolecules without the help of modern synthetic reagents has not been achieved in a laboratory. Now for the first time researchers have proposed a mechanism by which the formation of peptides could have occurred under prebiotic conditions. Reporting their findings in the July issue of the SCI journal Polymer International, they describe a molecular engine mechanism which could have taken place on primitive beaches in the Hadean age.

The molecular engine (the primary pump) relies on a reaction cycle made up of several successive steps, fed by amino acids, and fueled by NOx species. French researchers repeatedly cycled through the reaction steps using models of the primitive ocean, and each time peptides were formed, showing that the primary pump works at ambient temperatures and it continuously generates, elongates and complexifies sequential peptides.


Only a few of all the possible peptide sequences were formed, demonstrating that the primary pump should be able to select particular peptide sequences. Further, the primary pump should be able to drive the peptide pool towards homochirality through the amplifcation from a starting small enantiomeric excess.

For the proposed mechanism to work it assumes that there was a buffered ocean, emerged land and a nitrosating atmosphere. The researchers show that the primitive Earth during the Hadean may have satisfied all these requirements.

The Hadean began approximately 4.6 billion years ago with the creation of the Earth and ended 3.8 billion years ago. It was during the Hadean that the Earth surface cooled and solidified. The oldest terrestrial rocks are from this age and their chemical character demonstrates that a stable continental crust existed. Analysis has also shown that huge volumes of liquid water must have been available on the surface of the primitive Earth, and as the moon was already formed this would have tidal properties. According to lead researcher Auguste Commeyras, of the University of Montpellier, "The primary pump could have worked as soon as the pH of the oceans rose to 4-5. We consider it reasonable to postulate that the primitive ocean was initially acidic due to the presence of large amounts of CO2, and that its pH gradually increased to its current level through extraction of alkaline materials from reductive rocks."

The most recent works on the primitive atmosphere of the Earth suggest that its main components were CO2 and N2. Calculations show that sufficient NOx would have been available to supply the primary pump and act as a driving force to the mechanism. "The role of NO in the metabolisms of current living organisms might be a remnant of such a prebiotic chemistry," said Commeyras.

In conclusion Commeyras says, "Our primary pump scenario appears to be the first that is capable of supplying sequential peptides under realistic prebiotic conditions. Maintained out of thermodynamic equilibrium this system had the ability to recycle its reagents and to cause the products to evolve and increase in complexity. The emerging peptides would quickly have begun to act as catalysts, which may have helped the emergence of autoreplicant systems."

Joanna Gibson | alfa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>