Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Origins of Life


Were the first macromolecules created on a primitive beach?

In order for life to emerge both peptides and nucleic acids must have appeared under "prebiotic" conditions. Despite numerous efforts, the formation of these macromolecules without the help of modern synthetic reagents has not been achieved in a laboratory. Now for the first time researchers have proposed a mechanism by which the formation of peptides could have occurred under prebiotic conditions. Reporting their findings in the July issue of the SCI journal Polymer International, they describe a molecular engine mechanism which could have taken place on primitive beaches in the Hadean age.

The molecular engine (the primary pump) relies on a reaction cycle made up of several successive steps, fed by amino acids, and fueled by NOx species. French researchers repeatedly cycled through the reaction steps using models of the primitive ocean, and each time peptides were formed, showing that the primary pump works at ambient temperatures and it continuously generates, elongates and complexifies sequential peptides.

Only a few of all the possible peptide sequences were formed, demonstrating that the primary pump should be able to select particular peptide sequences. Further, the primary pump should be able to drive the peptide pool towards homochirality through the amplifcation from a starting small enantiomeric excess.

For the proposed mechanism to work it assumes that there was a buffered ocean, emerged land and a nitrosating atmosphere. The researchers show that the primitive Earth during the Hadean may have satisfied all these requirements.

The Hadean began approximately 4.6 billion years ago with the creation of the Earth and ended 3.8 billion years ago. It was during the Hadean that the Earth surface cooled and solidified. The oldest terrestrial rocks are from this age and their chemical character demonstrates that a stable continental crust existed. Analysis has also shown that huge volumes of liquid water must have been available on the surface of the primitive Earth, and as the moon was already formed this would have tidal properties. According to lead researcher Auguste Commeyras, of the University of Montpellier, "The primary pump could have worked as soon as the pH of the oceans rose to 4-5. We consider it reasonable to postulate that the primitive ocean was initially acidic due to the presence of large amounts of CO2, and that its pH gradually increased to its current level through extraction of alkaline materials from reductive rocks."

The most recent works on the primitive atmosphere of the Earth suggest that its main components were CO2 and N2. Calculations show that sufficient NOx would have been available to supply the primary pump and act as a driving force to the mechanism. "The role of NO in the metabolisms of current living organisms might be a remnant of such a prebiotic chemistry," said Commeyras.

In conclusion Commeyras says, "Our primary pump scenario appears to be the first that is capable of supplying sequential peptides under realistic prebiotic conditions. Maintained out of thermodynamic equilibrium this system had the ability to recycle its reagents and to cause the products to evolve and increase in complexity. The emerging peptides would quickly have begun to act as catalysts, which may have helped the emergence of autoreplicant systems."

Joanna Gibson | alfa

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>