Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

19.06.2002


Were the first macromolecules created on a primitive beach?



In order for life to emerge both peptides and nucleic acids must have appeared under "prebiotic" conditions. Despite numerous efforts, the formation of these macromolecules without the help of modern synthetic reagents has not been achieved in a laboratory. Now for the first time researchers have proposed a mechanism by which the formation of peptides could have occurred under prebiotic conditions. Reporting their findings in the July issue of the SCI journal Polymer International, they describe a molecular engine mechanism which could have taken place on primitive beaches in the Hadean age.

The molecular engine (the primary pump) relies on a reaction cycle made up of several successive steps, fed by amino acids, and fueled by NOx species. French researchers repeatedly cycled through the reaction steps using models of the primitive ocean, and each time peptides were formed, showing that the primary pump works at ambient temperatures and it continuously generates, elongates and complexifies sequential peptides.


Only a few of all the possible peptide sequences were formed, demonstrating that the primary pump should be able to select particular peptide sequences. Further, the primary pump should be able to drive the peptide pool towards homochirality through the amplifcation from a starting small enantiomeric excess.

For the proposed mechanism to work it assumes that there was a buffered ocean, emerged land and a nitrosating atmosphere. The researchers show that the primitive Earth during the Hadean may have satisfied all these requirements.

The Hadean began approximately 4.6 billion years ago with the creation of the Earth and ended 3.8 billion years ago. It was during the Hadean that the Earth surface cooled and solidified. The oldest terrestrial rocks are from this age and their chemical character demonstrates that a stable continental crust existed. Analysis has also shown that huge volumes of liquid water must have been available on the surface of the primitive Earth, and as the moon was already formed this would have tidal properties. According to lead researcher Auguste Commeyras, of the University of Montpellier, "The primary pump could have worked as soon as the pH of the oceans rose to 4-5. We consider it reasonable to postulate that the primitive ocean was initially acidic due to the presence of large amounts of CO2, and that its pH gradually increased to its current level through extraction of alkaline materials from reductive rocks."

The most recent works on the primitive atmosphere of the Earth suggest that its main components were CO2 and N2. Calculations show that sufficient NOx would have been available to supply the primary pump and act as a driving force to the mechanism. "The role of NO in the metabolisms of current living organisms might be a remnant of such a prebiotic chemistry," said Commeyras.

In conclusion Commeyras says, "Our primary pump scenario appears to be the first that is capable of supplying sequential peptides under realistic prebiotic conditions. Maintained out of thermodynamic equilibrium this system had the ability to recycle its reagents and to cause the products to evolve and increase in complexity. The emerging peptides would quickly have begun to act as catalysts, which may have helped the emergence of autoreplicant systems."

Joanna Gibson | alfa

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>