Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

19.06.2002


Were the first macromolecules created on a primitive beach?



In order for life to emerge both peptides and nucleic acids must have appeared under "prebiotic" conditions. Despite numerous efforts, the formation of these macromolecules without the help of modern synthetic reagents has not been achieved in a laboratory. Now for the first time researchers have proposed a mechanism by which the formation of peptides could have occurred under prebiotic conditions. Reporting their findings in the July issue of the SCI journal Polymer International, they describe a molecular engine mechanism which could have taken place on primitive beaches in the Hadean age.

The molecular engine (the primary pump) relies on a reaction cycle made up of several successive steps, fed by amino acids, and fueled by NOx species. French researchers repeatedly cycled through the reaction steps using models of the primitive ocean, and each time peptides were formed, showing that the primary pump works at ambient temperatures and it continuously generates, elongates and complexifies sequential peptides.


Only a few of all the possible peptide sequences were formed, demonstrating that the primary pump should be able to select particular peptide sequences. Further, the primary pump should be able to drive the peptide pool towards homochirality through the amplifcation from a starting small enantiomeric excess.

For the proposed mechanism to work it assumes that there was a buffered ocean, emerged land and a nitrosating atmosphere. The researchers show that the primitive Earth during the Hadean may have satisfied all these requirements.

The Hadean began approximately 4.6 billion years ago with the creation of the Earth and ended 3.8 billion years ago. It was during the Hadean that the Earth surface cooled and solidified. The oldest terrestrial rocks are from this age and their chemical character demonstrates that a stable continental crust existed. Analysis has also shown that huge volumes of liquid water must have been available on the surface of the primitive Earth, and as the moon was already formed this would have tidal properties. According to lead researcher Auguste Commeyras, of the University of Montpellier, "The primary pump could have worked as soon as the pH of the oceans rose to 4-5. We consider it reasonable to postulate that the primitive ocean was initially acidic due to the presence of large amounts of CO2, and that its pH gradually increased to its current level through extraction of alkaline materials from reductive rocks."

The most recent works on the primitive atmosphere of the Earth suggest that its main components were CO2 and N2. Calculations show that sufficient NOx would have been available to supply the primary pump and act as a driving force to the mechanism. "The role of NO in the metabolisms of current living organisms might be a remnant of such a prebiotic chemistry," said Commeyras.

In conclusion Commeyras says, "Our primary pump scenario appears to be the first that is capable of supplying sequential peptides under realistic prebiotic conditions. Maintained out of thermodynamic equilibrium this system had the ability to recycle its reagents and to cause the products to evolve and increase in complexity. The emerging peptides would quickly have begun to act as catalysts, which may have helped the emergence of autoreplicant systems."

Joanna Gibson | alfa

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>