Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Huge virulence gene superfamily responsible for devastating plant diseases

A research team from the Virginia Bioinformatics Institute at Virginia Tech has identified an enormous superfamily of pathogen genes involved in the infection of plants.

The Avh superfamily comprises genes found in the plant pathogens Phytophthora ramorum and Phytophthora sojae. The pathogen genes produce effector proteins that manipulate how plant cells work in such a way as to make the plant hosts more susceptible to infection. The results suggest that a single gene from a common ancestor of the both pathogen species has spawned hundreds of very different, fast-evolving genes that encode for these highly damaging effector proteins.

P. sojae causes severe devastation in soybean crops and results in $1–2 million in annual losses for commercial farmers in the United States. P. ramorum, which causes sudden oak death, has attacked and killed tens of thousands of oak trees in California and Oregon. Both pathogens belong to the oomycete group of organisms that also includes the potato late blight pathogen responsible for the Irish potato famine. The scientists probed the recently published genome sequences of both organisms using bioinformatic tools that can look for specific amino acid sequences or motifs. Advanced searches of the genome sequences (BLAST and Hidden Markov Model) revealed that the P. sojae and P. ramorum genomes encode large numbers of effector proteins (374 from P. ramorum and 396 from P. sojae) that likely facilitate the infection of their host plants. Given that there are more than 80 species of Phytophthora pathogens, these findings imply that there are more than 30 000 members of this superfamily within the genus Phytophthora.

Proteins arising from the Avh superfamily have very different amino acid sequences but share two common motifs at one end of the protein (N-terminus). The readily identified RXLR and dEER motifs (single letter code for amino acids) are required for entry of the proteins into plant host cells. Similar motifs are also found in the effector proteins produced by the malarial parasite Plasmodium as it invades red blood cells. The team also detected some conserved amino acid motifs (W, Y and L) at the other end (C terminus) of some of the proteins that have been selected over years of evolution. These C-terminal motifs are usually arranged as a module that can be repeated up to eight times. The functions of these C-terminal motifs are being investigated further.

... more about:
»AvH »Genome »Phytophthora »acid »amino »effector »motifs »ramorum »sojae »superfamily

The Avh gene superfamily is one of the most rapidly evolving parts of the genome. Duplications of genes are common and presumably responsible for the rapid expansion of the family. The diversity and duplication of genes noted in the sequences are consistent with maximizing the number of effector genes in the pathogens while making it increasingly difficult for the host defense systems to recognize invading molecules, ideal features for effector proteins aimed at wreaking havoc on susceptible plant hosts. Professor Brett Tyler of the Virginia Bioinformatics Institute, the leader of the project, remarked: “The extraordinary speed with which the Avh genes are evolving suggests that these genes are key to the pathogens’ ability to outwit the defense systems of the plants.”

Barry Whyte | EurekAlert!
Further information:

Further reports about: AvH Genome Phytophthora acid amino effector motifs ramorum sojae superfamily

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>