Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge virulence gene superfamily responsible for devastating plant diseases

07.04.2008
A research team from the Virginia Bioinformatics Institute at Virginia Tech has identified an enormous superfamily of pathogen genes involved in the infection of plants.

The Avh superfamily comprises genes found in the plant pathogens Phytophthora ramorum and Phytophthora sojae. The pathogen genes produce effector proteins that manipulate how plant cells work in such a way as to make the plant hosts more susceptible to infection. The results suggest that a single gene from a common ancestor of the both pathogen species has spawned hundreds of very different, fast-evolving genes that encode for these highly damaging effector proteins.

P. sojae causes severe devastation in soybean crops and results in $1–2 million in annual losses for commercial farmers in the United States. P. ramorum, which causes sudden oak death, has attacked and killed tens of thousands of oak trees in California and Oregon. Both pathogens belong to the oomycete group of organisms that also includes the potato late blight pathogen responsible for the Irish potato famine. The scientists probed the recently published genome sequences of both organisms using bioinformatic tools that can look for specific amino acid sequences or motifs. Advanced searches of the genome sequences (BLAST and Hidden Markov Model) revealed that the P. sojae and P. ramorum genomes encode large numbers of effector proteins (374 from P. ramorum and 396 from P. sojae) that likely facilitate the infection of their host plants. Given that there are more than 80 species of Phytophthora pathogens, these findings imply that there are more than 30 000 members of this superfamily within the genus Phytophthora.

Proteins arising from the Avh superfamily have very different amino acid sequences but share two common motifs at one end of the protein (N-terminus). The readily identified RXLR and dEER motifs (single letter code for amino acids) are required for entry of the proteins into plant host cells. Similar motifs are also found in the effector proteins produced by the malarial parasite Plasmodium as it invades red blood cells. The team also detected some conserved amino acid motifs (W, Y and L) at the other end (C terminus) of some of the proteins that have been selected over years of evolution. These C-terminal motifs are usually arranged as a module that can be repeated up to eight times. The functions of these C-terminal motifs are being investigated further.

... more about:
»AvH »Genome »Phytophthora »acid »amino »effector »motifs »ramorum »sojae »superfamily

The Avh gene superfamily is one of the most rapidly evolving parts of the genome. Duplications of genes are common and presumably responsible for the rapid expansion of the family. The diversity and duplication of genes noted in the sequences are consistent with maximizing the number of effector genes in the pathogens while making it increasingly difficult for the host defense systems to recognize invading molecules, ideal features for effector proteins aimed at wreaking havoc on susceptible plant hosts. Professor Brett Tyler of the Virginia Bioinformatics Institute, the leader of the project, remarked: “The extraordinary speed with which the Avh genes are evolving suggests that these genes are key to the pathogens’ ability to outwit the defense systems of the plants.”

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: AvH Genome Phytophthora acid amino effector motifs ramorum sojae superfamily

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>