Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene behind devastating vitamin B12-related disorder

04.04.2008
International team finds clues as to how vitamin B12 works as well as the mechanism of a related genetic disease

Swiss, British and Canadian researchers have identified the gene responsible for a rare but serious genetic disorder and have simultaneously provided more clues as to how vitamin B12 works in the body. Their results will be published April 3 in the New England Journal of Medicine.

Scientists at the University Children’s Hospitals of Basel and Zurich in Switzerland, Brunel University in West London, England and McGill University and the McGill University Health Centre (MUHC) in Montreal, Canada, have discovered the MMADHC gene, the role it plays in the metabolism of vitamin B12, and its relationship to the vitamin B12-related disorder, isolated and combined homocystinuria and methylmalonic aciduria (MMA) of the cblD variety..

Authors of the study include Dr. David Coelho, Dr. Terttu Suormala and Dr. Brian Fowler of the University Children’s Hospital, Basel, Dr. David Rosenblatt and his graduate student Jordan Lerner-Ellis of McGill and the MUHC and colleagues at the University Children’s Hospital, Zurich, the University of Zurich and Brunel University. In 2005, Dr. Rosenblatt and his McGill and MUHC colleagues made a related breakthrough involving another gene, called MMACHC.

... more about:
»B12 »B12-related »Genetic »Genetics »MUHC »Rosenblatt »Vitamin »disorder

Isolated and combined homocystinuria and MMA of the cblD variety is a rare genetic inability to process vitamin B12, which is usually diagnosed in infancy or childhood. Patients may suffer from a range of debilitating health problems, including serious developmental delay, psychosis and anemia. Despite the variety of symptoms presented by the disorder, this research shows all of them are caused by mutations in different parts of the same gene.

Vitamin B12 is an essential water-soluble vitamin found in animal-based foods -- including dairy, eggs, meat, poultry, fish and shellfish -- but not in plants. It is vital for the synthesis of red blood cells and the healthy maintenance of the nervous system, and also helps control homocysteine levels.. Excess homocysteine is associated with increased risk of heart disease, stroke and dementia.

“Most patients with B12 problems have difficulty absorbing the vitamin, or may be vegans who don’t get it in their diet,” said Dr. Rosenblatt, Chair of McGill’s Department Human Genetics, Director of Medical Genetics in Medicine at the MUHC, and Chief of Medical Genetics at the Jewish General Hospital. “However, this select group of patients becomes extremely sick because their bodies cannot transform the vitamin into its active forms.”

The research relied heavily on the expertise developed at McGill and Basel as world referral centres for the diagnosis of B12-related genetic diseases, Dr. Rosenblatt said. The study was funded in part by the Canadian Institutes of Health Research (CIHR).

“This important paper - published in the world's highest impact medical journal - is on-going testimony to the international leadership of Dr. Rosenblatt and his colleagues at McGill in their studies of vitamin B12 and the genetic diseases that disrupt the ability of the body to use vitamin B12,” said Dr. Roderick McInnes, Scientific Director of CIHR's Institute of Genetics. “This research also exemplifies the outstanding genetics research done by Canadian scientists.”

“This discovery offers earlier diagnosis and treatment options for this serious disease, and also helps explain the mechanism of how vitamin B12 works in everyone,” said Dr. Rosenblatt.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: B12 B12-related Genetic Genetics MUHC Rosenblatt Vitamin disorder

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>